385 research outputs found

    Deciphering context-dependent amber suppression efficiency in mammalian cells with an expanded genetic code

    Get PDF
    The genetic code of organisms can be expanded by introducing orthogonal translation systems (OTSs). One of the most commonly applied OTSs in mammalian cells is the archaeal pyrrolysyl-tRNA synthetase/tRNA_Pyl_CUA (PylRS/PylT) pair from Methanosarcina species. Thereby, usually in-frame amber stop codons (UAG) are suppressed to site-specifically incorporate non-canonical amino acids (ncAAs) into target proteins. These ncAAs can harbor unique chemical moieties, allowing to probe or engineer protein structure and function with high precision. To date, applicability of an expanded genetic code has been particularly advanced in bacteria by optimizing OTS components, modifying host translation, and developing mutually orthogonal translation systems. In mammalian cells, development of genetic code expansion tools has been largely focused on intrinsic properties of the OTS itself, for instance by engineering OTS components or tuning their expression levels. However, several-fold differences in ncAA incorporation efficiency are frequently observed between different amber stop codon positions within a target protein. These unpredictable variations in incorporation efficiencies substantially hamper the theoretical advantage of ncAAs to modify any user-defined site within a target protein. Here, applying a proteomics-based approach and fluorescent reporter system, we compute and validate a linear regression model that predicts ncAA incorporation efficiency in mammalian cells based on the nucleotide context. Thereby, we demonstrate that the immediate context directly modulates the competition between ncAA incorporation and termination at UAG. Moreover, our data support a molecular model in which the identity of up- and downstream nucleotides influences translational efficiency independent of amino acid and tRNA identity. Instead, base stacking of neighboring nucleotides might uniquely affect codon-anticodon base pairing during decoding of UAG. Additionally, context-specific ribosomal pausing and speed could contribute to varying ncAA incorporation efficiency. Furthermore, treatment with aminoglycosides and inhibition of nonsense mediated decay are proposed to improve yields of ncAA-modified proteins in mammalian cells. Taken together, our strategy not only facilitates the applicability of an expanded genetic code in mammalian cells, but should also prove useful in further deciphering the molecular mechanisms that govern context effects in translational efficiency. A better general understanding of context effects in translation would in turn benefit synthetic expansion of the genetic code.Der genetische Code von Organismen kann durch die Einbringung orthogonaler Translationssysteme (OTSe) erweitert werden. Das Pyrrolysyl-tRNA Synthetase/tRNA_Pyl_CUA (PylRS/PylT) Paar der Spezies Methanosarcina ist eines der am hĂ€ufigsten angewendeten OTSe in SĂ€ugerzellen. Üblicherweise wird damit das amber Stoppcodon (UAG) innerhalb eines Leserasters supprimiert, um an spezifischen Stellen eines Zielproteins nicht-kanonische AminosĂ€uren (nkASn) einzubauen. Diese nkASn können einzigartige chemische Motive enthalten, die es ermöglichen die Struktur und Funktion von Proteinen mit hoher PrĂ€zision zu untersuchen und zu manipulieren. Bisher wurde insbesondere in Bakterien die Anwendbarkeit eines erweiterten genetischen Codes verbessert, indem OTS Komponenten optimiert, die Translation in Wirtsorganismen modifiziert und wechselseitig orthogonale Translationssysteme entwickelt wurden. Die Weiterentwicklung von Methoden, um den genetischen Code in SĂ€ugerzellen zu erweitern, fokussierte sich ĂŒberwiegend auf intrinsische Eigenschaften der OTSe selbst, zum Beispiel der Modifizierung von OTS Komponenten oder der Anpassung ihrer Expressionslevel. HĂ€ufig unterscheiden sich jedoch verschiedene UAG Positionen in ihrer Effizienz eine nkAS einzubauen in mehrfacher Höhe. Diese unvorhersehbaren Schwankungen in der Einbaueffizienz schrĂ€nken den Vorteil von nkASn erheblich ein, theoretisch jede benutzerdefinierte Position innerhalb eines Zielproteins modifizieren zu können. In dieser Publikation berechnen und validieren wir mit Hilfe einer proteomischen Methode und eines fluoreszierenden Reportersystems ein lineares Regressionsmodell, das anhand des Nukleotidkontextes die Effizienz des nkAS Einbaus in SĂ€ugerzellen vorhersagt. Wir zeigen dadurch, dass der unmittelbare Kontext direkt das VerhĂ€ltnis zwischen nkAS Einbau und Termination an UAG moduliert. Unsere Daten unterstĂŒtzen zudem ein molekulares Modell, in dem die IdentitĂ€t der vorherigen und nachfolgenden Nukleotide die Effizienz der Translation unabhĂ€ngig von der IdentitĂ€t der AminosĂ€ure und tRNA beeinflusst. Hingegen könnte sich ein Basen-Stacking ĂŒber benachbarte Nukleotide in einzigartiger Weise auf die Codon-Anticodon Basenpaarung wĂ€hrend der Dekodierung von UAG auswirken. ZusĂ€tzlich könnten ein Pausieren sowie die Geschwindigkeit des Ribosoms in AbhĂ€ngigkeit vom Kontext zu der uneinheitlichen Effizienz des nkAS Einbaus beitragen. Des Weiteren werden ein Behandlungsverfahren mit Aminoglycosiden und eine Inhibierung des Nonsense-mediated Decay vorgeschlagen, um die Ausbeute an nkAS-modifizierten Proteinen zu verbessern. Zusammenfassend vereinfacht unsere Strategie nicht nur die Anwendbarkeit eines erweiterten genetischen Codes in SĂ€ugerzellen, sondern sollte sich auch als nĂŒtzlich erweisen, um die molekularen Mechanismen, ĂŒber die der Kontext die Translationseffizienz beeinflusst, weiter zu entschlĂŒsseln. Ein besseres allgemeines VerstĂ€ndnis der Kontexteffekte bei der Translation wĂŒrde wiederum die synthetische Erweiterung des genetischen Codes fördern

    Large Scale Comparative Codon-Pair Context Analysis Unveils General Rules that Fine-Tune Evolution of mRNA Primary Structure

    Get PDF
    BACKGROUND: Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. METHODOLOGIES/PRINCIPAL FINDINGS: We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. CONCLUSIONS: The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage

    Messenger RNA Destabilization by -1 Programmed Ribosomal Frameshifting

    Get PDF
    Although first discovered in viruses, previous studies have identified programmed -1 ribosomal frameshifting (-1 PRF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. This work improves and extends the computational methods used to search for potential -1 PRF signals. It continues to examine four yeast -1 PRF signals and show that they promote significant mRNA destabilization through the nonsense mediated (NMD) and no-go (NGD) decay pathways. Yeast EST2 mRNA is highly unstable and contains up to five -1 PRF signals. Ablation of the -1 PRF signals or of NMD stabilizes this mRNA. These same computational methods identified an operational programmed -1 ribosomal frameshift (-1 PRF) signal in the human mRNA encoding CCR5. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay (NMD) pathway. CCR5-mediated -1 PRF is stimulated by at least two miRNAs, one of which is shown to directly interact with the CCR5 -1 PRF signal. Structural analyses reveal a complex and dynamic mRNA structure in the -1 PRF signal, suggesting structural plasticity as the underlying biophysical basis for regulation of -1 PRF

    Computational identification of rare codons of Escherichia coli based on codon pairs preference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon bias is believed to play an important role in the control of gene expression. In <it>Escherichia coli</it>, some rare codons, which can limit the expression level of exogenous protein, have been defined by gene engineering operations. Previous studies have confirmed the existence of codon pair's preference in many genomes, but the underlying cause of this bias has not been well established. Here we focus on the patterns of rarely-used synonymous codons. A novel method was introduced to identify the rare codons merely by codon pair bias in <it>Escherichia coli</it>.</p> <p>Results</p> <p>In <it>Escherichia coli</it>, we defined the "rare codon pairs" by calculating the frequency of occurrence of all codon pairs in coding sequences. Rare codons which are disliked in genes could make great contributions to forming rare codon pairs. Meanwhile our investigation showed that many of these rare codon pairs contain termination codons and the recognized sites of restriction enzymes. Furthermore, a new index (F<sub>rare</sub>) was developed. Through comparison with the classical indices we found a significant negative correlation between F<sub>rare </sub>and the indices which depend on reference datasets.</p> <p>Conclusions</p> <p>Our approach suggests that we can identify rare codons by studying the context in which a codon lies. Also, the frequency of rare codons (F<sub>rare</sub>) could be a useful index of codon bias regardless of the lack of expression abundance information.</p
    • 

    corecore