655 research outputs found

    Survey on counting special types of polynomials

    Full text link
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gau{\ss} count the remaining ones, approximately and exactly. For polynomials in two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. This survey presents counting results for some special classes of multivariate polynomials over a finite field, namely the the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), the relatively irreducible ones (irreducible but reducible over an extension field), the decomposable ones, and also for reducible space curves. These come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f is decomposable if f = g o h for some nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we obtain closely matching upper and lower bounds on the number of decomposable polynomials. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. The crux of the matter is to count the number of collisions, where essentially different (g, h) yield the same f. We present a classification of all collisions at degree n = p^2 which yields an exact count of those decomposable polynomials.Comment: to appear in Jaime Gutierrez, Josef Schicho & Martin Weimann (editors), Computer Algebra and Polynomials, Lecture Notes in Computer Scienc

    Nearly Optimal Algorithms for the Decomposition of Multivariate Rational Functions and the Extended L\"uroth's Theorem

    Get PDF
    The extended L\"uroth's Theorem says that if the transcendence degree of \KK(\mathsf{f}_1,\dots,\mathsf{f}_m)/\KK is 1 then there exists f \in \KK(\underline{X}) such that \KK(\mathsf{f}_1,\dots,\mathsf{f}_m) is equal to \KK(f). In this paper we show how to compute ff with a probabilistic algorithm. We also describe a probabilistic and a deterministic algorithm for the decomposition of multivariate rational functions. The probabilistic algorithms proposed in this paper are softly optimal when nn is fixed and dd tends to infinity. We also give an indecomposability test based on gcd computations and Newton's polytope. In the last section, we show that we get a polynomial time algorithm, with a minor modification in the exponential time decomposition algorithm proposed by Gutierez-Rubio-Sevilla in 2001

    Factorizations of certain bivariate polynomials

    Full text link
    We determine the factorization of X*f(X)-Y*g(Y) over K[X,Y] for all squarefree additive polynomials f,g in K[X] and all fields K of odd characteristic. This answers a question of Kaloyan Slavov, who needed these factorizations in connection with an algebraic-geometric analogue of the Kakeya problem.Comment: 5 page

    Pseudo-modularity and Iwasawa theory

    Full text link
    We prove, assuming Greenberg's conjecture, that the ordinary eigencurve is Gorenstein at an intersection point between the Eisenstein family and the cuspidal locus. As a corollary, we obtain new results on Sharifi's conjecture. This result is achieved by constructing a universal ordinary pseudodeformation ring and proving an R=TR = \mathbb T result.Comment: Changes to section 5.9; typos corrected. To appear in Amer. J. Math. 54 page
    • …
    corecore