4,640 research outputs found

    Kecerdasan matematik-logik dalam kalangan pelajar sarjana Pendidikan Teknik dan Vokasional UTHM

    Get PDF
    Kecerdasan matematik-logik sering dikaitkan dengan penguasaan pelajar dalam subjek matematik. Pencapaian pelajar, khususnya pelajar Sarjana Pendidikan Teknik dan Vokasional, Universiti Tun Hussein Onn Malaysia (UTHM) dalam kursus Statistik dalam Penyelidikan sedikit sebanyak mempengaruhi pencapaian akademik pelajar. Oleh itu, kajian ini dijalankan untuk mengkaji pengaruh kecerdasan matematik-logik terhadap pencapaian pelajar dalam kursus Statistik dalam Penyelidikan. Kajian berbentuk tinjauan secara kuantitatif untuk melihat hubungan diantara dua pembolehubah iaitu pembolehubah tidak bersandar (kecerdasan matematik-logik) dan pembolehubah bersandar (penguasaan pelajar dalam kursus Statistik dalam Penyelidikan). Persampelan rawak mudah digunakan dalam kajian ini dengan mengambil sampel seramai 108 orang pelajar Sarjana Pendidikan Teknik dan Vokasional sebagai responden kajian. Data diperoleh daripada sampel dengan menggunakan borang soal selidik yang diolah berdasarkan alat pengukuran kecerdasan MIDAS (Multiple Intelligence Development Assessment Scales). Data dianalisis menggunakan perisian SPSS (Statistical Package for Social Science) versi 16.0 yang melibatkan ujian statistik skor min dan kolerasi pangkat Spearman. Hasil dapatan kajian menunjukkan tahap kecenderungan kecerdasan matematik-logik pelajar berada pada tahap yang tinggi dan mempunyai hubungan yang signifikan dengan pencapaian pelajar dalam kursus Statistik dalam Penyelidikan. Berdasarkan dapatan kajian boleh disimpulkan bahawa kecerdasan matematik-logik dapat dijadikan kayu ukur dalam memastikan kejayaan pelajar

    KRATOS: An Open Source Hardware-Software Platform for Rapid Research in LPWANs

    Full text link
    Long-range (LoRa) radio technologies have recently gained momentum in the IoT landscape, allowing low-power communications over distances up to several kilometers. As a result, more and more LoRa networks are being deployed. However, commercially available LoRa devices are expensive and propriety, creating a barrier to entry and possibly slowing down developments and deployments of novel applications. Using open-source hardware and software platforms would allow more developers to test and build intelligent devices resulting in a better overall development ecosystem, lower barriers to entry, and rapid growth in the number of IoT applications. Toward this goal, this paper presents the design, implementation, and evaluation of KRATOS, a low-cost LoRa platform running ContikiOS. Both, our hardware and software designs are released as an open- source to the research community.Comment: Accepted at WiMob 201

    A software definable MIMO testbed: architecture and functionality

    Get PDF
    Following the intensive theoretical studies of recently emerged MIMO technology, a variety of performance measures become important to investigate the challenges and trade-offs at various levels throughout MIMO system design process. This paper presents a review of the MIMO testbed recently set up at King’s College London. The architecture that distinguishes the testbed as a flexible and reconfigurable system is first preseneted. This includes both the hardware and software aspects, and is followed by a discussion of implementation methods and evaluation of system research capabilities

    Reconfigurable Architectures for Wireless Systems: Design Exploration and Integration Challenges

    Get PDF
    Mobile devices are severely power and area limited due to battery capacity and system size. In many of these example systems, advanced features require computationally complex signal processing on high-speed data streams for enhanced networking capabilities. Thus, mapping high-level communication and networking algorithms to system architectures is a complex and challenging procedure. An important challenge is to characterize the area, time, and power requirements of these embedded system modules and to use this information effectively to determine the architecture of programmable, reconfigurable, and fixed-function modules. In this paper, we will focus on application examples in wireless networking which highlight these challenges in reconfigurable systems integration.Nokia CorporationTexas Instruments IncorporatedNational Science Foundatio

    VLSI Architectures and Rapid Prototyping Testbeds for Wireless Systems

    Get PDF
    The rapid evolution of wireless access is creating an ever changing variety of standards for indoor and outdoor environments. The real-time processing demands of wireless data rates in excess of 100 Mbps is a challenging problem for architecture design and verification. In this paper, we consider current trends in VLSI architecture and in rapid prototyping testbeds to evaluate these systems. The key phases in multi-standard system design and prototyping include: Algorithm Mapping to Parallel Architectures – based on the real-time data and sampling rate and the resulting area, time and power complexity; Configurable Mappings and Design Exploration – based on heterogeneous architectures consisting of DSP, programmable application-specific instruction (ASIP) processors, and co-processors; and Verification and Testbed Integration – based on prototype implementation on programmable devices and integration with RF units.Nokia Foundation FellowshipNokia CorporationNational InstrumentsNational Science Foundatio

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    Teaching the Electronic Design and Embedded System Course with Body Sensor Nodes

    Get PDF
    The body sensor nodes armed with a MSP430 microcontroller, a IEEE 802.15.4 radio chip, a memory flash and an electronic amplifier circuits is proposed as an educational platform for electronic design and embedded system courses. The body sensor nodes are designed based on a commercial wireless sensor network (WSN) device that contains the microcontroller, radio chip and memory flash in a single platform. The WSN device also supplies the connection pins for I/O signals, ADC, SPI and UART functionalities, to control an electronic amplifier circuit. For electronic design courses, the ease of creating the body sensor node, will be hard to resist by the students. An electronic amplifier is designed and fabricated by the students in the laboratory in the electronic design courses. The WSN device is stacked on the top of the electronic amplifier circuit to prototype a new body sensor node. For the embedded system course students, the unique properties of TinyOS used as the operating system for the body sensor node allowed the students see the effects of the software in short time

    Chemical event tracking using a low-cost wireless chemical sensing network

    Get PDF
    A recently developed low-cost light emitting diode (LED) chemical sensing technique is integrated with a Mica2Dot wireless communications platform to form a deployable wireless chemical event indicator network. The operation of the colorimetric sensing node has been evaluated to determine its reproducibility and limit of detection for an acidic airborne contaminant. A test-scale network of five similar chemical sensing nodes is deployed in a star communication topology at fixed points within a custom built Environmental Sensing Chamber (ESC). Presented data sets collected from the deployed wireless chemical sensor network (WCSN) show that during an acidic event scenario it is possible to track the plume speed and direction, and estimate the concentration of chemical plume by examining the collective sensor data relative to individual sensor node location within the monitored environment
    • 

    corecore