28,655 research outputs found

    Discrete Particle Swarm Optimization for the minimum labelling Steiner tree problem

    Get PDF
    Particle Swarm Optimization is an evolutionary method inspired by the social behaviour of individuals inside swarms in nature. Solutions of the problem are modelled as members of the swarm which fly in the solution space. The evolution is obtained from the continuous movement of the particles that constitute the swarm submitted to the effect of the inertia and the attraction of the members who lead the swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combinatorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is illustrated on the minimum labelling Steiner tree problem: given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes, whose edges have the smallest number of distinct labels

    Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem

    Get PDF
    This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree using edges that are as similar as possible. Given an undirected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning tree whose edges have the smallest number of distinct labels. This problem has been shown to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algorithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method. Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform the other algorithms tested. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristics
    corecore