169 research outputs found

    On the Performance of Short Block Codes over Finite-State Channels in the Rare-Transition Regime

    Full text link
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This article characterizes the performance of random block codes over finite-state channels and evaluates their queueing performance under maximum-likelihood decoding. In particular, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. This creates an analysis framework where channel dependencies within and across codewords are preserved. Such results are subsequently integrated into a queueing problem formulation. For instance, it is shown that, for random coding on the Gilbert-Elliott channel, the performance analysis based on upper bounds on error probability provides very good estimates of system performance and optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware, point-to-point communication links. It also provides novel guidelines on how to select code rates and block lengths for real-time traffic over wireless communication infrastructures

    Performance Analysis of Block Codes over Finite-state Channels in Delay-sensitive Communications

    Get PDF
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This dissertation seeks to characterize the performance of block codes over finite-state channels with memory and also evaluate their queueing performance under different encoding/decoding schemes. In particular, a fading formulation is considered where a discrete channel with correlation over time introduces errors. For carefully selected channel models and arrival processes, a tractable Markov structure composed of queue length and channel state is identified. This facilitates the analysis of the stationary behavior of the system, leading to evaluation criteria such as bounds on the probability of the queue exceeding a threshold. Specifically, this dissertation focuses on system models with scalable arrival profiles based on Poisson processes, and finite-state memory channels. These assumptions permit the rigorous comparison of system performance for codes with arbitrary block lengths and code rates. Based on this characterization, it is possible to optimize code parameters for delay-sensitive applications over various channels. Random codes and BCH codes are then employed as means to study the relationship between code-rate selection and the queueing performance of point-to-point data links. The introduced methodology offers a new perspective on the joint queueing-coding analysis for finite-state channels, and is supported by numerical simulations. Furthermore, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. An analysis framework is presented where channel dependencies within and across code words are preserved. The results are subsequently integrated into a queueing formulation. It is shown that for current formulation, the performance analysis based on upper bounds provides a good estimate of both the system performance and the optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware communications and provides novel guidelines to select optimum code rates and block lengths

    A Systematic Approach to Incremental Redundancy over Erasure Channels

    Full text link
    As sensing and instrumentation play an increasingly important role in systems controlled over wired and wireless networks, the need to better understand delay-sensitive communication becomes a prime issue. Along these lines, this article studies the operation of data links that employ incremental redundancy as a practical means to protect information from the effects of unreliable channels. Specifically, this work extends a powerful methodology termed sequential differential optimization to choose near-optimal block sizes for hybrid ARQ over erasure channels. In doing so, an interesting connection between random coding and well-known constants in number theory is established. Furthermore, results show that the impact of the coding strategy adopted and the propensity of the channel to erase symbols naturally decouple when analyzing throughput. Overall, block size selection is motivated by normal approximations on the probability of decoding success at every stage of the incremental transmission process. This novel perspective, which rigorously bridges hybrid ARQ and coding, offers a pragmatic means to select code rates and blocklengths for incremental redundancy.Comment: 7 pages, 2 figures; A shorter version of this article will appear in the proceedings of ISIT 201

    Capacity-Achieving Coding Mechanisms: Spatial Coupling and Group Symmetries

    Get PDF
    The broad theme of this work is in constructing optimal transmission mechanisms for a wide variety of communication systems. In particular, this dissertation provides a proof of threshold saturation for spatially-coupled codes, low-complexity capacity-achieving coding schemes for side-information problems, a proof that Reed-Muller and primitive narrow-sense BCH codes achieve capacity on erasure channels, and a mathematical framework to design delay sensitive communication systems. Spatially-coupled codes are a class of codes on graphs that are shown to achieve capacity universally over binary symmetric memoryless channels (BMS) under belief-propagation decoder. The underlying phenomenon behind spatial coupling, known as “threshold saturation via spatial coupling”, turns out to be general and this technique has been applied to a wide variety of systems. In this work, a proof of the threshold saturation phenomenon is provided for irregular low-density parity-check (LDPC) and low-density generator-matrix (LDGM) ensembles on BMS channels. This proof is far simpler than published alternative proofs and it remains as the only technique to handle irregular and LDGM codes. Also, low-complexity capacity-achieving codes are constructed for three coding problems via spatial coupling: 1) rate distortion with side-information, 2) channel coding with side-information, and 3) write-once memory system. All these schemes are based on spatially coupling compound LDGM/LDPC ensembles. Reed-Muller and Bose-Chaudhuri-Hocquengham (BCH) are well-known algebraic codes introduced more than 50 years ago. While these codes are studied extensively in the literature it wasn’t known whether these codes achieve capacity. This work introduces a technique to show that Reed-Muller and primitive narrow-sense BCH codes achieve capacity on erasure channels under maximum a posteriori (MAP) decoding. Instead of relying on the weight enumerators or other precise details of these codes, this technique requires that these codes have highly symmetric permutation groups. In fact, any sequence of linear codes with increasing blocklengths whose rates converge to a number between 0 and 1, and whose permutation groups are doubly transitive achieve capacity on erasure channels under bit-MAP decoding. This pro-vides a rare example in information theory where symmetry alone is sufficient to achieve capacity. While the channel capacity provides a useful benchmark for practical design, communication systems of the day also demand small latency and other link layer metrics. Such delay sensitive communication systems are studied in this work, where a mathematical framework is developed to provide insights into the optimal design of these systems

    Dynamic power allocation and routing for satellite and wireless networks with time varying channels

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (p. 283-295).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Satellite and wireless networks operate over time varying channels that depend on attenuation conditions, power allocation decisions, and inter-channel interference. In order to reliably integrate these systems into a high speed data network and meet the increasing demand for high throughput and low delay, it is necessary to develop efficient network layer strategies that fully utilize the physical layer capabilities of each network element. In this thesis, we develop the notion of network layer capacity and describe capacity achieving power allocation and routing algorithms for general networks with wireless links and adaptive transmission rates. Fundamental issues of delay, throughput optimality, fairness, implementation complexity, and robustness to time varying channel conditions and changing user demands are discussed. Analysis is performed at the packet level and fully considers the queueing dynamics in systems with arbitrary, potentially bursty, arrival processes. Applications of this research are examined for the specific cases of satellite networks and ad-hoc wireless networks. Indeed, in Chapter 3 we consider a multi-beam satellite downlink and develop a dynamic power allocation algorithm that allocates power to each link in reaction to queue backlog and current channel conditions. The algorithm operates without knowledge of the arriving traffic or channel statistics, and is shown to achieve maximum throughput while maintaining average delay guarantees. At the end of Chapter 4, a crosslinked collection of such satellites is considered and a satellite separation principle is developed, demonstrating that joint optimal control can be implemented with separate algorithms for the downlinks and crosslinks.(cont.) Ad-hoc wireless networks are given special attention in Chapter 6. A simple cell- partitioned model for a mobile ad-hoc network with N users is constructed, and exact expressions for capacity and delay are derived. End-to-end delay is shown to be O(N), and hence grows large as the size of the network is increased. To reduce delay, a transmission protocol which sends redundant packet information over multiple paths is developed and shown to provide O(vN) delay at the cost of reducing throughput. A fundamental rate- delay tradeoff curve is established, and the given protocols for achieving O(N) and O(vN) delay are shown to operate on distinct boundary points of this curve. In Chapters 4 and 5 we consider optimal control for a general time-varying network. A cross-layer strategy is developed that stabilizes the network whenever possible, and makes fair decisions about which data to serve when inputs exceed capacity. The strategy is decoupled into separate algorithms for dynamic flow control, power allocation, and routing, and allows for each user to make greedy decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimally fair operating point that is achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an end-to-end delay increase for data that is served by the network.by Michael J. Neely.Ph.D
    corecore