469 research outputs found

    Testing Uniformity of Stationary Distribution

    Full text link
    A random walk on a directed graph gives a Markov chain on the vertices of the graph. An important question that arises often in the context of Markov chain is whether the uniform distribution on the vertices of the graph is a stationary distribution of the Markov chain. Stationary distribution of a Markov chain is a global property of the graph. In this paper, we prove that for a regular directed graph whether the uniform distribution on the vertices of the graph is a stationary distribution, depends on a local property of the graph, namely if (u,v) is an directed edge then outdegree(u) is equal to indegree(v). This result also has an application to the problem of testing whether a given distribution is uniform or "far" from being uniform. This is a well studied problem in property testing and statistics. If the distribution is the stationary distribution of the lazy random walk on a directed graph and the graph is given as an input, then how many bits of the input graph do one need to query in order to decide whether the distribution is uniform or "far" from it? This is a problem of graph property testing and we consider this problem in the orientation model (introduced by Halevy et al.). We reduce this problem to test (in the orientation model) whether a directed graph is Eulerian. And using result of Fischer et al. on query complexity of testing (in the orientation model) whether a graph is Eulerian, we obtain bounds on the query complexity for testing whether the stationary distribution is uniform

    The Subgraph Testing Model

    Get PDF
    We initiate a study of testing properties of graphs that are presented as subgraphs of a fixed (or an explicitly given) graph. The tester is given free access to a base graph G=([n],E), and oracle access to a function f:E -> {0,1} that represents a subgraph of G. The tester is required to distinguish between subgraphs that posses a predetermined property and subgraphs that are far from possessing this property. We focus on bounded-degree base graphs and on the relation between testing graph properties in the subgraph model and testing the same properties in the bounded-degree graph model. We identify cases in which testing is significantly easier in one model than in the other as well as cases in which testing has approximately the same complexity in both models. Our proofs are based on the design and analysis of efficient testers and on the establishment of query-complexity lower bounds

    Testing formula satisfaction

    Get PDF
    We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size

    Canonisation and Definability for Graphs of Bounded Rank Width

    Full text link
    We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3k+4)(3k+4) is a complete isomorphism test for the class of all graphs of rank width at most kk. Rank width is a graph invariant that, similarly to tree width, measures the width of a certain style of hierarchical decomposition of graphs; it is equivalent to clique width. It was known that isomorphism of graphs of rank width kk is decidable in polynomial time (Grohe and Schweitzer, FOCS 2015), but the best previously known algorithm has a running time nf(k)n^{f(k)} for a non-elementary function ff. Our result yields an isomorphism test for graphs of rank width kk running in time nO(k)n^{O(k)}. Another consequence of our result is the first polynomial time canonisation algorithm for graphs of bounded rank width. Our second main result is that fixed-point logic with counting captures polynomial time on all graph classes of bounded rank width.Comment: 32 page

    A Problem-based Curriculum for Algorithmic Programming

    Get PDF

    Testing read-once formula satisfaction

    Get PDF
    We study the query complexity of testing for properties defined by read once formulas, as instances of {\em massively parametrized properties}, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in ϵ\epsilon, doubly exponential in the arity, and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an {\em estimation} algorithm, that outputs an approximation of the distance of the input from satisfying the property. For formulas only involving And/Or gates, we provide a more efficient test whose query complexity is only quasipolynomial in ϵ\epsilon. On the other hand, we show that such testability results do not hold in general for formulas over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 22 (non-Boolean) formula over an alphabet of size 44, such that any 1/41/4-test for it requires a number of queries depending on the formula size. We also present such a formula over an alphabet of size 55 that additionally satisfies a strong monotonicity condition

    Manufacturability and Analysis of Topologically Optimized Continuous Fiber Reinforced Composites

    Get PDF
    Researchers are unlocking the potential of Continuous Fiber Reinforced Composites for producing components with greater strength-to-weight ratios than state of the art metal alloys and unidirectional composites. The key is the emerging technology of topology optimization and advances in additive manufacturing. Topology optimization can fine tune component geometry and fiber placement all while satisfying stress constraints. However, the technology cannot yet robustly guarantee manufacturability. For this reason, substantial post-processing of an optimized design consisting of manual fiber replacement and subsequent Finite Element Analysis (FEA) is still required. To automate this post-processing in two dimensions, two (2) algorithms were developed. The first one is aimed at filling the space of a topologically optimized component with fibers of prescribed thickness. The objective is to produce flawless fiber paths, meaning no self-intersections, no tight turns, and no overlapping between fibers. It does so by leveraging concepts from elementary geometry and the Signed Distance Function of a topologically optimized domain. The manufacturable fiber paths are represented using Non-Uniform Rational Basis Splines, which can be readily conveyed to a 3D-printer as The second algorithm then calls a meshing routine to spatially discretize the topologically optimized domain. It takes input from the first algorithm to automatically create and append, orientations and material flags to the spatial elements produced by the meshing routine. Finally, it generates output that is then input to FEA software. The software is written in the C-programming language using the PETSc library. A load case is validated against MSC NASTRAN

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility
    corecore