3 research outputs found

    Mathematical model for ciliary-induced transport in MHD flow of Cu-H2O nanoßuids with magnetic induction

    Get PDF
    Motivated by novel developments in surface-modified, nanoscale, magnetohydrodynamic (MHD) biomedical devices, we study theoretically the ciliary induced transport by metachronal wave propagation in hydromagnetic flow of copper-water nanofluids through a parallel plate channel. Under the physiological constraints, creeping flow is taken into consideration i.e. inertial forces are small compared with viscous forces. The metachronal wavelength is also considered as very large for cilia induced MHD flow. Magnetic Reynolds number is sufficiently large to invoke magnetic induction effects. The physical problem is linearized and exact solutions are developed for the resulting boundary value problem. Closed-form expressions are presented for the stream function, pressure rise, induced magnetic field function and temperature. Mathematica symbolic software is used to compute and illustrate numerical results. The influence of physical parameters on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. The present computations are applicable to simulations of flow control of in nano-magneto-biomimetic technologies

    Biological interactions between carreau fluid and micro-swimmers in a complex wavy canal with MHD effects

    Get PDF
    The efficient magnetic swimming of actual or mechanically designed micro-swimmers within bounded regions is reliant on several factors. Few of which are: the actuation of these swimmers via magnetic field, rheology of surrounding liquid (with dominant viscous forces), nature of medium (either porous or non-porous), position (either straight, inclined or declined) and state (either active or passive) of the narrow passage. To witness these interactions, we utilize Carreau fluid with Taylor swimming sheet model under magnetic and porous effects. Moreover, the cervical canal is approximated as a two-dimensional complex wavy channel inclined at certain angle with the horizontal. The momentum equations are reduced by means of lubrication assumption, which finally leads to a fourth order differential equation. MATLAB's built-in bvp4c function is employed to solve the resulting boundary value problem (BVP). The solution obtained via bvp4c is further verified by finite difference method (FDM). In both these methods, the refined values of flow rate and cell speed are computed by utilizing modified Newton-Raphson method. These realistic pairs are further utilized, to calculate the energy delivered by the micro-swimmer. The numerical results are plotted and discussed at the end of the article. Our study explains that the optimum speed of the micro-organism can be achieved by means of exploiting the fluid rheology and with the suitable application of the magnetic field. The peristaltic nature of the channel walls and porous medium may also serve as alternative factors to control the speed of the propeller

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value
    corecore