5,121 research outputs found

    Lucas' theorem: its generalizations, extensions and applications (1878--2014)

    Full text link
    In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient (nm){n\choose m} modulo a prime pp in terms of the binomial coefficients of the base-pp digits of nn and mm: {\it If pp is a prime, n=n0+n1p+⋯+nspsn=n_0+n_1p+\cdots +n_sp^s and m=m0+m1p+⋯+mspsm=m_0+m_1p+\cdots +m_sp^s are the pp-adic expansions of nonnegative integers nn and mm, then \begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}. \end{equation*}} The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of Lucas}), plays an important role in Number Theory and Combinatorics. In this article, consisting of six sections, we provide a historical survey of Lucas type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas like theorems for some generalized binomial coefficients, and some their applications. In Section 1 we present the fundamental congruences modulo a prime including the famous Lucas' theorem. In Section 2 we mention several known proofs and some consequences of Lucas' theorem. In Section 3 we present a number of extensions and variations of Lucas' theorem modulo prime powers. In Section 4 we consider the notions of the Lucas property and the double Lucas property, where we also present numerous integer sequences satisfying one of these properties or a certain Lucas type congruence. In Section 5 we collect several known Lucas type congruences for some generalized binomial coefficients. In particular, this concerns the Fibonomial coefficients, the Lucas uu-nomial coefficients, the Gaussian qq-nomial coefficients and their generalizations. Finally, some applications of Lucas' theorem in Number Theory and Combinatorics are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to Lucas' theore

    Note on Ward-Horadam H(x) - binomials' recurrences and related interpretations, II

    Full text link
    We deliver here second new H(x)−binomials′\textit{H(x)}-binomials' recurrence formula, were H(x)−binomials′H(x)-binomials' array is appointed by Ward−HoradamWard-Horadam sequence of functions which in predominantly considered cases where chosen to be polynomials . Secondly, we supply a review of selected related combinatorial interpretations of generalized binomial coefficients. We then propose also a kind of transfer of interpretation of p,q−binomialp,q-binomial coefficients onto q−binomialq-binomial coefficients interpretations thus bringing us back to Gyo¨rgyPoˊlyaGy{\"{o}}rgy P\'olya and Donald Ervin Knuth relevant investigation decades ago.Comment: 57 pages, 8 figure

    The congruence of Wolstenholme and generalized binomial coefficients related to Lucas sequences

    Full text link
    Using generalized binomial coefficients with respect to fundamental Lucas sequences we establish congruences that generalize the classical congruence of Wolstenholme and other related stronger congruences.Comment: 23 page

    Divisors and specializations of Lucas polynomials

    Full text link
    Three-term recurrences have infused stupendous amount of research in a broad spectrum of the sciences, such as orthogonal polynomials (in special functions) and lattice paths (in enumerative combinatorics). Among these are the Lucas polynomials, which have seen a recent true revival. In this paper one of the themes of investigation is the specialization to the Pell and Delannoy numbers. The underpinning motivation comprises primarily of divisibility and symmetry. One of the most remarkable findings is a structural decomposition of the Lucas polynomials into what we term as flat and sharp analogs.Comment: Minor typos are fixed, new references are added. To appear in Journal of Combinatoric

    Factors of sums and alternating sums involving binomial coefficients and powers of integers

    Full text link
    We study divisibility properties of certain sums and alternating sums involving binomial coefficients and powers of integers. For example, we prove that for all positive integers n1,...,nmn_1,..., n_m, nm+1=n1n_{m+1}=n_1, and any nonnegative integer rr, there holds {align*} \sum_{k=0}^{n_1}\epsilon^k (2k+1)^{2r+1}\prod_{i=1}^{m} {n_i+n_{i+1}+1\choose n_i-k} \equiv 0 \mod (n_1+n_m+1){n_1+n_m\choose n_1}, {align*} and conjecture that for any nonnegative integer rr and positive integer ss such that r+sr+s is odd, ∑k=0nϵk(2k+1)r((2nn−k)−(2nn−k−1))s≡0mod  (2nn), \sum_{k=0}^{n}\epsilon ^k (2k+1)^{r}({2n\choose n-k}-{2n\choose n-k-1})^{s} \equiv 0 \mod{{2n\choose n}}, where ϵ=±1\epsilon=\pm 1.Comment: 14 pages, to appear in Int. J. Number Theor

    Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012)

    Full text link
    In 1862 Wolstenholme proved that for any prime p≥5p\ge 5 the numerator of the fraction 1+12+13+...+1p−1 1+\frac 12 +\frac 13+...+\frac{1}{p-1} written in reduced form is divisible by p2p^2, (2)(2) and the numerator of the fraction 1+122+132+...+1(p−1)2 1+\frac{1}{2^2} +\frac{1}{3^2}+...+\frac{1}{(p-1)^2} written in reduced form is divisible by pp. The first of the above congruences, the so called {\it Wolstenholme's theorem}, is a fundamental congruence in combinatorial number theory. In this article, consisting of 11 sections, we provide a historical survey of Wolstenholme's type congruences and related problems. Namely, we present and compare several generalizations and extensions of Wolstenholme's theorem obtained in the last hundred and fifty years. In particular, we present more than 70 variations and generalizations of this theorem including congruences for Wolstenholme primes. These congruences are discussed here by 33 remarks. The Bibliography of this article contains 106 references consisting of 13 textbooks and monographs, 89 papers, 3 problems and Sloane's On-Line Enc. of Integer Sequences. In this article, some results of these references are cited as generalizations of certain Wolstenholme's type congruences, but without the expositions of related congruences. The total number of citations given here is 189.Comment: 31 pages. We provide a historical survey of Wolstenholme's type congruences (1862-2012) including more than 70 related results and 106 references. This is in fact version 2 of the paper extended with congruences (12) and (13
    • …
    corecore