18 research outputs found

    Envelopes of conditional probabilities extending a strategy and a prior probability

    Full text link
    Any strategy and prior probability together are a coherent conditional probability that can be extended, generally not in a unique way, to a full conditional probability. The corresponding class of extensions is studied and a closed form expression for its envelopes is provided. Then a topological characterization of the subclasses of extensions satisfying the further properties of full disintegrability and full strong conglomerability is given and their envelopes are studied.Comment: 2

    Numerical Methods for Infinite Decision-Making Processes

    Get PDF
    The new computational methodology due to Yaroslav Sergeyev (see [25–27]) makes it possible to evaluate numerically the terminal features of complete, sequential decision-making processes. By standard numerical methods, these processes have indeterminate features or seem to support paradoxical conclusions. We show that they are better regarded as a class of problems for which the numerical methods based on Sergeyev’s methodology provide a uniform technique of resolution

    Additivity Requirements in Classical and Quantum Probability

    Get PDF
    The discussion of different principles of additivity (finite vs. countable vs. complete additivity) for probability functions has been largely focused on the personalist interpretation of probability. Very little attention has been given to additivity principles for physical probabilities. The form of additivity for quantum probabilities is determined by the algebra of observables that characterize a physical system and the type of quantum state that is realizable and preparable for that system. We assess arguments designed to show that only normal quantum states are realizable and preparable and, therefore, quantum probabilities satisfy the principle of complete additivity. We underscore the little remarked fact that unless the dimension of the Hilbert space is incredibly large, complete additivity in ordinary non-relativistic quantum mechanics (but not in relativistic quantum field theory) reduces to countable additivity. We then turn to ways in which knowledge of quantum probabilities may constrain rational credence about quantum events and, thereby, constrain the additivity principle satisfied by rational credence functions

    Additivity Requirements in Classical and Quantum Probability

    Get PDF
    The discussion of different principles of additivity (finite vs. countable vs. complete additivity) for probability functions has been largely focused on the personalist interpretation of probability. Very little attention has been given to additivity principles for physical probabilities. The form of additivity for quantum probabilities is determined by the algebra of observables that characterize a physical system and the type of quantum state that is realizable and preparable for that system. We assess arguments designed to show that only normal quantum states are realizable and preparable and, therefore, quantum probabilities satisfy the principle of complete additivity. We underscore the little remarked fact that unless the dimension of the Hilbert space is incredibly large, complete additivity in ordinary non-relativistic quantum mechanics (but not in relativistic quantum field theory) reduces to countable additivity. We then turn to ways in which knowledge of quantum probabilities may constrain rational credence about quantum events and, thereby, constrain the additivity principle satisfied by rational credence functions

    An operational approach to graphical uncertainty modelling

    Get PDF

    2-coherent and 2-convex Conditional Lower Previsions

    Get PDF
    In this paper we explore relaxations of (Williams) coherent and convex conditional previsions that form the families of nn-coherent and nn-convex conditional previsions, at the varying of nn. We investigate which such previsions are the most general one may reasonably consider, suggesting (centered) 22-convex or, if positive homogeneity and conjugacy is needed, 22-coherent lower previsions. Basic properties of these previsions are studied. In particular, we prove that they satisfy the Generalized Bayes Rule and always have a 22-convex or, respectively, 22-coherent natural extension. The role of these extensions is analogous to that of the natural extension for coherent lower previsions. On the contrary, nn-convex and nn-coherent previsions with n≥3n\geq 3 either are convex or coherent themselves or have no extension of the same type on large enough sets. Among the uncertainty concepts that can be modelled by 22-convexity, we discuss generalizations of capacities and niveloids to a conditional framework and show that the well-known risk measure Value-at-Risk only guarantees to be centered 22-convex. In the final part, we determine the rationality requirements of 22-convexity and 22-coherence from a desirability perspective, emphasising how they weaken those of (Williams) coherence.Comment: This is the authors' version of a work that was accepted for publication in the International Journal of Approximate Reasoning, vol. 77, October 2016, pages 66-86, doi:10.1016/j.ijar.2016.06.003, http://www.sciencedirect.com/science/article/pii/S0888613X1630079
    corecore