101,867 research outputs found

    Communication over Finite-Chain-Ring Matrix Channels

    Full text link
    Though network coding is traditionally performed over finite fields, recent work on nested-lattice-based network coding suggests that, by allowing network coding over certain finite rings, more efficient physical-layer network coding schemes can be constructed. This paper considers the problem of communication over a finite-ring matrix channel Y=AX+BEY = AX + BE, where XX is the channel input, YY is the channel output, EE is random error, and AA and BB are random transfer matrices. Tight capacity results are obtained and simple polynomial-complexity capacity-achieving coding schemes are provided under the assumption that AA is uniform over all full-rank matrices and BEBE is uniform over all rank-tt matrices, extending the work of Silva, Kschischang and K\"{o}tter (2010), who handled the case of finite fields. This extension is based on several new results, which may be of independent interest, that generalize concepts and methods from matrices over finite fields to matrices over finite chain rings.Comment: Submitted to IEEE Transactions on Information Theory, April 2013. Revised version submitted in Feb. 2014. Final version submitted in June 201

    Cokernels of random matrices satisfy the Cohen-Lenstra heuristics

    Full text link
    Let A be an n by n random matrix with iid entries taken from the p-adic integers or Z/NZ. Then under mild non-degeneracy conditions the cokernel of A has a universal probability distribution. In particular, the p-part of an iid random matrix over the integers has cokernel distributed according to the Cohen-Lenstra measure up to an exponentially small error.Comment: 21 pages; submitte

    Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

    Full text link
    This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n\times n-sensing matrices contain, on average, \Omega(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at IEEE International Symposium on Information Theory (ISIT) 201

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    Quantum Algorithms for Matrix Products over Semirings

    Full text link
    In this paper we construct quantum algorithms for matrix products over several algebraic structures called semirings, including the (max,min)-matrix product, the distance matrix product and the Boolean matrix product. In particular, we obtain the following results. We construct a quantum algorithm computing the product of two n x n matrices over the (max,min) semiring with time complexity O(n^{2.473}). In comparison, the best known classical algorithm for the same problem, by Duan and Pettie, has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time quantum algorithm for computing the all-pairs bottleneck paths of a graph with n vertices, while classically the best upper bound for this task is O(n^{2.687}), again by Duan and Pettie. We construct a quantum algorithm computing the L most significant bits of each entry of the distance product of two n x n matrices in time O(2^{0.64L} n^{2.46}). In comparison, prior to the present work, the best known classical algorithm for the same problem, by Vassilevska and Williams and Yuster, had complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for classical algorithms as well, reducing the classical complexity to O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L. The above two algorithms are the first quantum algorithms that perform better than the O~(n5/2)\tilde O(n^{5/2})-time straightforward quantum algorithm based on quantum search for matrix multiplication over these semirings. We also consider the Boolean semiring, and construct a quantum algorithm computing the product of two n x n Boolean matrices that outperforms the best known classical algorithms for sparse matrices. For instance, if the input matrices have O(n^{1.686...}) non-zero entries, then our algorithm has time complexity O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page

    Computing Minimal Polynomials of Matrices

    Full text link
    We present and analyse a Monte-Carlo algorithm to compute the minimal polynomial of an nĂ—nn\times n matrix over a finite field that requires O(n3)O(n^3) field operations and O(n) random vectors, and is well suited for successful practical implementation. The algorithm, and its complexity analysis, use standard algorithms for polynomial and matrix operations. We compare features of the algorithm with several other algorithms in the literature. In addition we present a deterministic verification procedure which is similarly efficient in most cases but has a worst-case complexity of O(n4)O(n^4). Finally, we report the results of practical experiments with an implementation of our algorithms in comparison with the current algorithms in the {\sf GAP} library
    • …
    corecore