530 research outputs found

    Exact Byzantine Consensus on Arbitrary Directed Graphs Under Local Broadcast Model

    Get PDF
    We consider Byzantine consensus in a synchronous system where nodes are connected by a network modeled as a directed graph, i.e., communication links between neighboring nodes are not necessarily bi-directional. The directed graph model is motivated by wireless networks wherein asymmetric communication links can occur. In the classical point-to-point communication model, a message sent on a communication link is private between the two nodes on the link. This allows a Byzantine faulty node to equivocate, i.e., send inconsistent information to its neighbors. This paper considers the local broadcast model of communication, wherein transmission by a node is received identically by all of its outgoing neighbors, effectively depriving the faulty nodes of the ability to equivocate. Prior work has obtained sufficient and necessary conditions on undirected graphs to be able to achieve Byzantine consensus under the local broadcast model. In this paper, we obtain tight conditions on directed graphs to be able to achieve Byzantine consensus with binary inputs under the local broadcast model. The results obtained in the paper provide insights into the trade-off between directionality of communication links and the ability to achieve consensus

    Generalisation : graphs and colourings

    Get PDF
    The interaction between practice and theory in mathematics is a central theme. Many mathematical structures and theories result from the formalisation of a real problem. Graph Theory is rich with such examples. The graph structure itself was formalised by Leonard Euler in the quest to solve the problem of the Bridges of Königsberg. Once a structure is formalised, and results are proven, the mathematician seeks to generalise. This can be considered as one of the main praxis in mathematics. The idea of generalisation will be illustrated through graph colouring. This idea also results from a classic problem, in which it was well known by topographers that four colours suffice to colour any map such that no countries sharing a border receive the same colour. The proof of this theorem eluded mathematicians for centuries and was proven in 1976. Generalisation of graphs to hypergraphs, and variations on the colouring theme will be discussed, as well as applications in other disciplines.peer-reviewe

    Analysis of the Matrix Event Graph Replicated Data Type

    Get PDF
    Matrix is a new kind of decentralized, topic-based publish-subscribe middleware for communication and data storage that is getting particularly popular as a basis for secure instant messaging. By comparison with traditional decentralized communication systems, Matrix replaces pure message passing with a replicated data structure. This data structure, which we extract and call the Matrix Event Graph (MEG), depicts the causal history of messages. We show that this MEG represents an interesting and important replicated data type for decentralized applications that are based on causal histories of publish-subscribe events: First, we prove that the MEG is a Conflict-Free Replicated Data Type for causal histories and, thus, provides Strong Eventual Consistency (SEC). With SEC being among the best known achievable trade-offs in the scope of the well-known CAP theorem, the MEG provides a powerful consistency guarantee while being available during network partition. Second, we discuss the implications of byzantine attackers on the data type’s properties. We note that the MEG, as it does not strive for consensus or strong consistency, can cope with n>fn>f environments with nn participants, of which ff are byzantine. Furthermore, we analyze scalability: Using Markov chains, we study the number of forward extremities of the MEG over time and observe an almost optimal evolution. We conjecture that this property is inherent to the underlying spatially inhomogeneous random walk. With the properties shown, a MEG represents a promising element in the set of data structures for decentralized applications, but with distinct trade-offs compared to traditional blockchains and distributed ledger technologies

    Analysis of the Matrix Event Graph Replicated Data Type

    Get PDF
    Matrix is a new kind of decentralized, topic-based publish-subscribe middleware for communication and data storage that is getting particularly popular as a basis for secure instant messaging. By comparison with traditional decentralized communication systems, Matrix replaces pure message passing with a replicated data structure. This data structure, which we extract and call the Matrix Event Graph (MEG), depicts the causal history of messages. We show that this MEG represents an interesting and important replicated data type for decentralized applications that are based on causal histories of publish-subscribe events: First, we prove that the MEG is a Conflict-Free Replicated Data Type for causal histories and, thus, provides Strong Eventual Consistency (SEC). With SEC being among the best known achievable trade-offs in the scope of the well-known CAP theorem, the MEG provides a powerful consistency guarantee while being available during network partition. Second, we discuss the implications of byzantine attackers on the data type’s properties. We note that the MEG, as it does not strive for consensus or strong consistency, can cope with n>fn>f environments with nn participants, of which ff are byzantine. Furthermore, we analyze scalability: Using Markov chains, we study the number of forward extremities of the MEG over time and observe an almost optimal evolution. We conjecture that this property is inherent to the underlying spatially inhomogeneous random walk. With the properties shown, a MEG represents a promising element in the set of data structures for decentralized applications, but with distinct trade-offs compared to traditional blockchains and distributed ledger technologies
    • …
    corecore