113 research outputs found

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Estimation of the parameters of token-buckets in multi-hop environments

    Full text link
    Bandwidth verification in shaping scenarios receives much attention of both operators and clients because of its impact on Quality of Service (QoS). As a result, measuring shapers’ parameters, namely the Committed Information Rate (CIR), Peak Information Rate (PIR) and Maximum Burst Size (MBS), is a relevant issue when it comes to assess QoS. In this paper, we present a novel algorithm, TBCheck, which serves to accurately measure such parameters with minimal intrusiveness. These measurements are the cornerstone for the validation of Service Level Agreements (SLA) with multiple shaping elements along an end-to-end path. As a further outcome of this measurement method, we define a formal taxonomy of multi-hop shaping scenarios. A thorough performance evaluation covering the latter taxonomy shows the advantages of TBCheck compared to other tools in the state of the art, yielding more accurate results even in the presence of cross-traffic. Additionally, our findings show that MBS estimation is unfeasible when the link load is high, regardless the measurement technique, because the token-bucket will always be empty. Consequently, we propose an estimation policy which maximizes the accuracy by measuring CIR during busy hours and PIR and MBS during off-peak hoursThis work was partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under the project Tráfica (MINECO/FEDER TEC2015-69417-C2-1-R

    Layer 1-informed Internet Topology Measurement

    Full text link
    Understanding the Internet’s topological structure continues to be fraught with challenges. In this paper, we investigate the hypothesis that physical maps of service provider infras-tructure can be used to effectively guide topology discov-ery based on network layer TTL-limited measurement. The goal of our work is to focus layer 3-based probing on broadly identifying Internet infrastructure that has a fixed geographic location such as POPs, IXPs and other kinds of hosting fa-cilities. We begin by comparing more than 1.5 years of TTL-limited probe data from the Ark [25] project with maps of service provider infrastructure from the Internet Atlas [15] project. We find that there are substantially more nodes and links identified in the service provider map data ver-sus the probe data. Next, we describe a new method for probe-based measurement of physical infrastructure called POPsicle that is based on careful selection of probe source-destination pairs. We demonstrate the capability of our method through an extensive measurement study using ex-isting “looking glass ” vantage points distributed throughout the Internet and show that it reveals 2.4 times more phys-ical node locations versus standard probing methods. To demonstrate the deployability of POPsicle we also conduct tests at an IXP. Our results again show that POPsicle can identify more physical node locations compared with stan-dard layer 3 probes, and through this deployment approach it can be used to measure thousands of networks world wide

    AI secured SD-WAN architecture as a latency critical IoT enabler for 5G and beyond communications

    Get PDF
    Software-defined Wide Area Network (SD-WAN) is an elementary change in the way network architects and service providers transpose their focus from hardware to the software oriented paradigm. Using a virtual network overlay, SD-WAN classifies and prioritizes how each application goes through the network based on business priority, quality of service (QoS), service-level agreements (SLAs) and security requirements. In this paper, we reviewed a system level concept and implementation of AI secured SD-WAN technology that is helping service providers to easily connect to and integrate across all the different IoT compute edges required to optimize the traffic and management of 5G cells. This architecture will enable a seamless transition for energy sector towards a full 5G connectivity by managing any data available across the edge, leveraging 5G transport for those critical applications that require ultra-low latency and higher bandwidths. Moreover, we weigh the pros and cons of using hybrid Multi-protocol Label Switching (MPLS) with SD-WAN to provide seamless integration, scalability and flexibility to the energy sector

    Design and Development of a Framework for Traffic Management in a Global Manufacturing Enterprise: The American Standard Case Study

    Get PDF
    Managed Bandwidth Services (MBSs) use Quality of Service (QoS) guarantees to effectively control traffic flows and reduce network delay. In the past, the provision of MBS in a global manufacturing enterprise was a difficult task for network administrators. However, advances in recently emerging technologies, such as Multiprotocol Label Switching (MPLS), Generalized Multiprotocol Label Switching (GMPLS), Integrated Services (IntServ), Differentiated Services (DiffServ), and Constraint-based Routing (CBR), hold promise to make MBS implementation more manageable. QoS technologies, such as DiffServ and IntServ, offer the benefits of better application performance and delivery of reliable network service. As a consequence of network traffic loads, packet congestion and latency increases still exist and must be addressed by enterprises that intend to support an MBS solution. In this investigation, the author addressed an issue that is faced by many large manufacturing enterprises, i.e., the addition of latency and congestion sensitive traffic such as Voice-over-Internet Protocol (VoIP) to networks with limited bandwidth. The goal of this research was to provide global manufacturing enterprises with a model for bandwidth management in their offices and plants. This model was based on findings from a case study of traffic management at American Standard Companies

    A Logically Centralized Approach for Control and Management of Large Computer Networks

    Get PDF
    Management of large enterprise and Internet Service Provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these limitations, the networking research community has been pursuing the vision of simplifying the functional role of a router to its primary task of packet forwarding. This enables centralizing network control at a decision plane where network-wide state can be maintained, and network control can be centrally and consistently enforced. However, scalability and fault-tolerance concerns with physical centralization motivate the need for a more flexible and customizable approach. This dissertation is an attempt at bridging the gap between the extremes of distribution and centralization of network control. We present a logically centralized approach for the design of network decision plane that can be realized by using a set of physically distributed controllers in a network. This approach is aimed at giving network designers the ability to customize the level of control and management centralization according to the scalability, fault-tolerance, and responsiveness requirements of their networks. Our thesis is that logical centralization provides a robust, reliable, and efficient paradigm for management of large networks and we present several contributions to prove this thesis. For network planning, we describe techniques for optimizing the placement of network controllers and provide guidance on the physical design of logically centralized networks. For network operation, algorithms for maintaining dynamic associations between the decision plane and network devices are presented, along with a protocol that allows a set of network controllers to coordinate their decisions, and present a unified interface to the managed network devices. Furthermore, we study the trade-offs in decision plane application design and provide guidance on application state and logic distribution. Finally, we present results of extensive numerical and simulative analysis of the feasibility and performance of our approach. The results show that logical centralization can provide better scalability and fault-tolerance while maintaining performance similarity with traditional distributed approach

    Policy Conflict Management in Distributed SDN Environments

    Get PDF
    abstract: The ease of programmability in Software-Defined Networking (SDN) makes it a great platform for implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and consistency issues with the hardness of this problem being affected by the distribution scheme for the SDN controllers. In this dissertation, a formalism for flow rule conflicts in SDN environments is introduced. This formalism is realized in Brew, a security policy analysis framework implemented on an OpenDaylight SDN controller. Brew has comprehensive conflict detection and resolution modules to ensure that no two flow rules in a distributed SDN-based cloud environment have conflicts at any layer; thereby assuring consistent conflict-free security policy implementation and preventing information leakage. Techniques for global prioritization of flow rules in a decentralized environment are presented, using which all SDN flow rule conflicts are recognized and classified. Strategies for unassisted resolution of these conflicts are also detailed. Alternately, if administrator input is desired to resolve conflicts, a novel visualization scheme is implemented to help the administrators view the conflicts in an aesthetic manner. The correctness, feasibility and scalability of the Brew proof-of-concept prototype is demonstrated. Flow rule conflict avoidance using a buddy address space management technique is studied as an alternate to conflict detection and resolution in highly dynamic cloud systems attempting to implement an SDN-based Moving Target Defense (MTD) countermeasures.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    BGP-Multipath Routing in the Internet

    Get PDF
    BGP-Multipath, or BGP-M, is a routing technique for balancing traffic load in the Internet. It enables a Border Gateway Protocol (BGP) border router to install multiple ‘equally-good’ paths to a destination prefix. While other multipath routing techniques are deployed at internal routers, BGP-M is deployed at border routers where traffic is shared on multiple border links between Autonomous Systems (ASes). Although there are a considerable number of research efforts on multipath routing, there is so far no dedicated measurement or study on BGP-M in the literature. This thesis presents the first systematic study on BGP-M. I proposed a novel approach to inferring the deployment of BGP-M by querying Looking Glass (LG) servers. I conducted a detailed investigation on the deployment of BGP-M in the Internet. I also analysed BGP-M’s routing properties based on traceroute measurements using RIPE Atlas probes. My research has revealed that BGP-M has already been used in the Internet. In particular, Hurricane Electric (AS6939), a Tier-1 network operator, has deployed BGP-M at border routers across its global network to hundreds of its neighbour ASes on both IPv4 and IPv6 Internet. My research has provided the state-of-the-art knowledge and insights in the deployment, configuration and operation of BGP-M. The data, methods and analysis introduced in this thesis can be immensely valuable to researchers, network operators and regulators who are interested in improving the performance and security of Internet routing. This work has raised awareness of BGP-M and may promote more deployment of BGP-M in future because BGP-M not only provides all benefits of multipath routing but also has distinct advantages in terms of flexibility, compatibility and transparency

    Practical Approach to Identifying Additive Link Metrics with Shortest Path Routing

    Full text link
    © 2015 IEEE. We revisit the problem of identifying link metrics from end- to-end path measurements in practical IP networks where shortest path routing is the norm. Previous solutions rely on explicit routing techniques (e.g., source routing or MPLS) to construct independent measurement paths for efficient link metric identification. However, most IP networks still adopt shortest path routing paradigm, while the explicit routing is not supported by most of the routers. Thus, this paper studies the link metric identification problem under shortest path routing constraints. To uniquely identify the link metrics, we need to place sufficient number of monitors into the network such that there exist m (the number of links) linear independent shortest paths between the monitors. In this paper, we first formulate the problem as a mixed integer linear programming problem, and then to make the problem tractable in large networks, we propose a Monitor Placement and Measurement Path Selection (MP-MPS) algorithm that adheres to shortest path routing constraints. Extensive simulations on random and real networks show that the MP- MPS gets near-optimal solutions in small networks, and MP- MPS significantly outperforms a baseline solution in large networks
    corecore