49,562 research outputs found

    Improving subband spectral estimation using modified AR model

    Get PDF
    It has already been shown that spectral estimation can be improved when applied to subband outputs of an adapted filterbank rather than to the original fullband signal. In the present paper, this procedure is applied jointly to a novel predictive autoregressive (AR) model. The model exploits time-shifting and is therefore referred to as time-shift AR (TSAR) model. Estimators are proposed for the unknown TS-AR parameters and the spectrum of the observed signal. The TS-AR model yields improved spectrum estimation by taking advantage of the correlation between subseries that after decimation. Simulation results on signals with continuous and line spectra that demonstrate the performance of the proposed method are provided

    Predictability of band-limited, high-frequency, and mixed processes in the presence of ideal low-pass filters

    Full text link
    Pathwise predictability of continuous time processes is studied in deterministic setting. We discuss uniform prediction in some weak sense with respect to certain classes of inputs. More precisely, we study possibility of approximation of convolution integrals over future time by integrals over past time. We found that all band-limited processes are predictable in this sense, as well as high-frequency processes with zero energy at low frequencies. It follows that a process of mixed type still can be predicted if an ideal low-pass filter exists for this process.Comment: 10 page

    Predictability on finite horizon for processes with exponential decrease of energy on higher frequencies

    Full text link
    The paper presents sufficient conditions of predictability for continuous time processes in deterministic setting. We found that processes with exponential decay on energy for higher frequencies are predictable in some weak sense on some finite time horizon defined by the rate of decay. Moreover, this predictability can be achieved uniformly over classes of processes. Some explicit formulas for predictors are suggested.Comment: 11 page

    Introduction to Random Signals and Noise

    Get PDF
    Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals.\ud \ud Key features:\ud • Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains.\ud • Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver.\ud • Examines optimal filtering methods and their consequences.\ud • Presents a detailed discussion of the topic of Poisson processed and shot noise.\u

    Wavenet based low rate speech coding

    Full text link
    Traditional parametric coding of speech facilitates low rate but provides poor reconstruction quality because of the inadequacy of the model used. We describe how a WaveNet generative speech model can be used to generate high quality speech from the bit stream of a standard parametric coder operating at 2.4 kb/s. We compare this parametric coder with a waveform coder based on the same generative model and show that approximating the signal waveform incurs a large rate penalty. Our experiments confirm the high performance of the WaveNet based coder and show that the speech produced by the system is able to additionally perform implicit bandwidth extension and does not significantly impair recognition of the original speaker for the human listener, even when that speaker has not been used during the training of the generative model.Comment: 5 pages, 2 figure
    corecore