111 research outputs found

    A Unified Polynomial-Time Algorithm for Feedback Vertex Set on Graphs of Bounded Mim-Width

    Get PDF
    We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decomposition of mim-width w, we give an n^{O(w)}-time algorithm that solves Feedback Vertex Set. This provides a unified algorithm for many well-known classes, such as Interval graphs and Permutation graphs, and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as Circular Permutation and Circular k-Trapezoid graphs for fixed k. In all these classes the decomposition is computable in polynomial time, as shown by Belmonte and Vatshelle [Theor. Comput. Sci. 2013]. We show that powers of graphs of tree-width w-1 or path-width w and powers of graphs of clique-width w have mim-width at most w. These results extensively provide new classes of bounded mim-width. We prove a slight strengthening of the first statement which implies that, surprisingly, Leaf Power graphs which are of importance in the field of phylogenetic studies have mim-width at most 1. Given a tree decomposition of width w-1, a path decomposition of width w, or a clique-width w-expression of a graph G, one can for any value of k find a mim-width decomposition of its k-power in polynomial time, and apply our algorithm to solve Feedback Vertex Set on the k-power in time n^{O(w)}. In contrast to Feedback Vertex Set, we show that Hamiltonian Cycle is NP-complete even on graphs of linear mim-width 1, which further hints at the expressive power of the mim-width parameter

    Obstructions to Faster Diameter Computation: Asteroidal Sets

    Get PDF
    Full version of an IPEC'22 paperAn extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let ExtαExt_{\alpha} be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than α\alpha pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every mm-edge graph in ExtαExt_{\alpha} can be computed in deterministic O(α3m3/2){\cal O}(\alpha^3 m^{3/2}) time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive +1+1-approximation of all vertex eccentricities in deterministic O(α2m){\cal O}(\alpha^2 m) time. This is in sharp contrast with general mm-edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in O(m2−ϵ){\cal O}(m^{2-\epsilon}) time for any ϵ>0\epsilon > 0. As important special cases of our main result, we derive an O(m3/2){\cal O}(m^{3/2})-time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an O(k3m3/2){\cal O}(k^3m^{3/2})-time algorithm for this problem on graphs of asteroidal number at most kk. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions

    Mim-Width II. The Feedback Vertex Set Problem

    Get PDF
    Under embargo until: 2020-07-18We give a first polynomial-time algorithm for (WEIGHTED) FEEDBACK VERTEX SET on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decomposition of mim-width w, we give an nO(w)-time algorithm that solves FEEDBACK VERTEX SET. This provides a unified polynomial-time algorithm for many well-known classes, such as INTERVAL graphs, PERMUTATION graphs, and LEAF POWER graphs (given a leaf root), and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as CIRCULAR PERMUTATION and CIRCULAR k-TRAPEZOID graphs (given a circular k-trapezoid model) for fixed k. We complement our result by showing that FEEDBACK VERTEX SET is W[1]-hard when parameterized by w and the hardness holds even when a linear branch decomposition of mim-width w is given.acceptedVersio
    • …
    corecore