28,418 research outputs found

    On the robustness of Herlihy's hierarchy

    Get PDF
    A wait-free hierarchy maps object types to levels in Z(+) U (infinity) and has the following property: if a type T is at level N, and T' is an arbitrary type, then there is a wait-free implementation of an object of type T', for N processes, using only registers and objects of type T. The infinite hierarchy defined by Herlihy is an example of a wait-free hierarchy. A wait-free hierarchy is robust if it has the following property: if T is at level N, and S is a finite set of types belonging to levels N - 1 or lower, then there is no wait-free implementation of an object of type T, for N processes, using any number and any combination of objects belonging to the types in S. Robustness implies that there are no clever ways of combining weak shared objects to obtain stronger ones. Contrary to what many researchers believe, we prove that Herlihy's hierarchy is not robust. We then define some natural variants of Herlihy's hierarchy, which are also infinite wait-free hierarchies. With the exception of one, which is still open, these are not robust either. We conclude with the open question of whether non-trivial robust wait-free hierarchies exist

    Sharing Memory between Byzantine Processes using Policy-enforced Tuple Spaces

    Get PDF
    Abstract—Despite the large amount of Byzantine fault-tolerant algorithms for message-passing systems designed through the years, only recent algorithms for the coordination of processes subject to Byzantine failures using shared memory have appeared. This paper presents a new computing model in which shared memory objects are protected by fine-grained access policies, and a new shared memory object, the Policy-Enforced Augmented Tuple Space (PEATS). We show the benefits of this model by providing simple and efficient consensus algorithms. These algorithms are much simpler and require less shared memory operations, using also less memory bits than previous algorithms based on access control lists (ACLs) and sticky bits. We also prove that PEATS objects are universal, i.e., that they can be used to implement any other shared memory object, and present lock-free and wait-free universal constructions. Index Terms—Byzantine fault-tolerance, shared memory algorithms, tuple spaces, consensus, universal constructions. Ç

    FairLedger: A Fair Blockchain Protocol for Financial Institutions

    Get PDF
    Financial institutions are currently looking into technologies for permissioned blockchains. A major effort in this direction is Hyperledger, an open source project hosted by the Linux Foundation and backed by a consortium of over a hundred companies. A key component in permissioned blockchain protocols is a byzantine fault tolerant (BFT) consensus engine that orders transactions. However, currently available BFT solutions in Hyperledger (as well as in the literature at large) are inadequate for financial settings; they are not designed to ensure fairness or to tolerate selfish behavior that arises when financial institutions strive to maximize their own profit. We present FairLedger, a permissioned blockchain BFT protocol, which is fair, designed to deal with rational behavior, and, no less important, easy to understand and implement. The secret sauce of our protocol is a new communication abstraction, called detectable all-to-all (DA2A), which allows us to detect participants (byzantine or rational) that deviate from the protocol, and punish them. We implement FairLedger in the Hyperledger open source project, using Iroha framework, one of the biggest projects therein. To evaluate FairLegder's performance, we also implement it in the PBFT framework and compare the two protocols. Our results show that in failure-free scenarios FairLedger achieves better throughput than both Iroha's implementation and PBFT in wide-area settings

    A Look at Basics of Distributed Computing *

    Get PDF
    International audienceThis paper presents concepts and basics of distributed computing which are important (at least from the author's point of view), and should be known and mastered by Master students and engineers. Those include: (a) a characterization of distributed computing (which is too much often confused with parallel computing); (b) the notion of a synchronous system and its associated notions of a local algorithm and message adversaries; (c) the notion of an asynchronous shared memory system and its associated notions of universality and progress conditions; and (d) the notion of an asynchronous message-passing system with its associated broadcast and agreement abstractions, its impossibility results, and approaches to circumvent them. Hence, the paper can be seen as a guided tour to key elements that constitute basics of distributed computing

    Exploring Key-Value Stores in Multi-Writer Byzantine-Resilient Register Emulations

    Get PDF
    Resilient register emulation is a fundamental technique to implement dependable storage and distributed systems. In data-centric models, where servers are modeled as fail-prone base objects, classical solutions achieve resilience by using fault-tolerant quorums of read-write registers or read-modify-write objects. Recently, this model has attracted renewed interest due to the popularity of cloud storage providers (e.g., Amazon S3), that can be modeled as key-value stores (KVSs) and combined for providing secure and dependable multi-cloud storage services. In this paper we present three novel wait-free multi-writer multi-reader regular register emulations on top of Byzantine-prone KVSs. We implemented and evaluated these constructions using five existing cloud storage services and show that their performance matches or surpasses existing data-centric register emulations

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics
    • …
    corecore