18,897 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Non-classical computing: feasible versus infeasible

    Get PDF
    Physics sets certain limits on what is and is not computable. These limits are very far from having been reached by current technologies. Whilst proposals for hypercomputation are almost certainly infeasible, there are a number of non classical approaches that do hold considerable promise. There are a range of possible architectures that could be implemented on silicon that are distinctly different from the von Neumann model. Beyond this, quantum simulators, which are the quantum equivalent of analogue computers, may be constructable in the near future

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Are there new models of computation? Reply to Wegner and Eberbach

    Get PDF
    Wegner and Eberbach[Weg04b] have argued that there are fundamental limitations to Turing Machines as a foundation of computability and that these can be overcome by so-called superTuring models such as interaction machines, the [pi]calculus and the $-calculus. In this paper we contest Weger and Eberbach claims

    Strictly contractive quantum channels and physically realizable quantum computers

    Get PDF
    We study the robustness of quantum computers under the influence of errors modelled by strictly contractive channels. A channel TT is defined to be strictly contractive if, for any pair of density operators ρ,σ\rho,\sigma in its domain, ∄Tρ−Tσ∄1≀k∄ρ−σ∄1\| T\rho - T\sigma \|_1 \le k \| \rho-\sigma \|_1 for some 0≀k<10 \le k < 1 (here ∄⋅∄1\| \cdot \|_1 denotes the trace norm). In other words, strictly contractive channels render the states of the computer less distinguishable in the sense of quantum detection theory. Starting from the premise that all experimental procedures can be carried out with finite precision, we argue that there exists a physically meaningful connection between strictly contractive channels and errors in physically realizable quantum computers. We show that, in the absence of error correction, sensitivity of quantum memories and computers to strictly contractive errors grows exponentially with storage time and computation time respectively, and depends only on the constant kk and the measurement precision. We prove that strict contractivity rules out the possibility of perfect error correction, and give an argument that approximate error correction, which covers previous work on fault-tolerant quantum computation as a special case, is possible.Comment: 14 pages; revtex, amsfonts, amssymb; made some changes (recommended by Phys. Rev. A), updated the reference
    • 

    corecore