12,396 research outputs found

    A generalised model of judgment aggregation.

    Get PDF

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Fuzzy argumentation for trust

    No full text
    In an open Multi-Agent System, the goals of agents acting on behalf of their owners often conflict with each other. Therefore, a personal agent protecting the interest of a single user cannot always rely on them. Consequently, such a personal agent needs to be able to reason about trusting (information or services provided by) other agents. Existing algorithms that perform such reasoning mainly focus on the immediate utility of a trusting decision, but do not provide an explanation of their actions to the user. This may hinder the acceptance of agent-based technologies in sensitive applications where users need to rely on their personal agents. Against this background, we propose a new approach to trust based on argumentation that aims to expose the rationale behind such trusting decisions. Our solution features a separation of opponent modeling and decision making. It uses possibilistic logic to model behavior of opponents, and we propose an extension of the argumentation framework by Amgoud and Prade to use the fuzzy rules within these models for well-supported decisions

    Generalized Probabilistic Reasoning and Empirical Studies on Computational Efficiency and Scalability

    Get PDF
    Expert Systems are tools that can be very useful for diagnostic purposes, however current methods of storing and reasoning with knowledge have significant limitations. One set of limitations involves how to store and manipulate uncertain knowledge: much of the knowledge we are dealing with has some degree of uncertainty. These limitations include lack of complete information, not being able to model cyclic information and limitations on the size and complexity of the problems to be solved. If expert systems are ever going to be able to tackle significant real world problems then these deficiencies must be corrected. This paper describes a new method of reasoning with uncertain knowledge which improves the computational efficiency as well as scalability over current methods. The cornerstone of this method involves incorporating and exploiting information about the structure of the knowledge representation to reduce the problem size and complexity. Additionally, a new knowledge representation is discussed that will further increase the capability of expert systems to model a wider variety of real world problems. Finally, benchmarking studies of the new algorithm against the old have led to insights into the graph structure of very large knowledge bases
    corecore