5,599 research outputs found

    Quantum Error Correction with magnetic molecules

    Full text link
    Quantum algorithms often assume independent spin qubits to produce trivial =0|\uparrow\rangle=|0\rangle, =1|\downarrow\rangle=|1\rangle mappings. This can be unrealistic in many solid-state implementations with sizeable magnetic interactions. Here we show that the lower part of the spectrum of a molecule containing three exchange-coupled metal ions with S=1/2S=1/2 and I=1/2I=1/2 is equivalent to nine electron-nuclear qubits. We derive the relation between spin states and qubit states in reasonable parameter ranges for the rare earth 159^{159}Tb3+^{3+} and for the transition metal Cu2+^{2+}, and study the possibility to implement Shor's Quantum Error Correction code on such a molecule. We also discuss recently developed molecular systems that could be adequate from an experimental point of view.Comment: 5 pages, 3 figures, 2 table

    Multi-objective improvement of software using co-evolution and smart seeding

    Get PDF
    Optimising non-functional properties of software is an important part of the implementation process. One such property is execution time, and compilers target a reduction in execution time using a variety of optimisation techniques. Compiler optimisation is not always able to produce semantically equivalent alternatives that improve execution times, even if such alternatives are known to exist. Often, this is due to the local nature of such optimisations. In this paper we present a novel framework for optimising existing software using a hybrid of evolutionary optimisation techniques. Given as input the implementation of a program or function, we use Genetic Programming to evolve a new semantically equivalent version, optimised to reduce execution time subject to a given probability distribution of inputs. We employ a co-evolved population of test cases to encourage the preservation of the program’s semantics, and exploit the original program through seeding of the population in order to focus the search. We carry out experiments to identify the important factors in maximising efficiency gains. Although in this work we have optimised execution time, other non-functional criteria could be optimised in a similar manner

    Quantum Games and Programmable Quantum Systems

    Get PDF
    Attention to the very physical aspects of information characterizes the current research in quantum computation, quantum cryptography and quantum communication. In most of the cases quantum description of the system provides advantages over the classical approach. Game theory, the study of decision making in conflict situation has already been extended to the quantum domain. We would like to review the latest development in quantum game theory that is relevant to information processing. We will begin by illustrating the general idea of a quantum game and methods of gaining an advantage over "classical opponent". Then we review the most important game theoretical aspects of quantum information processing. On grounds of the discussed material, we reason about possible future development of quantum game theory and its impact on information processing and the emerging information society. The idea of quantum artificial intelligence is explained.
    corecore