608 research outputs found

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Ancient and historical systems

    Get PDF

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin

    Prospects of Nanotechnology in Clinical Immunodiagnostics

    Get PDF
    Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety

    Exploration of intercell wireless millimeter-wave communication in the landscape of intelligent metasurfaces

    Get PDF
    Software-defined metasurfaces are electromagnetically ultra-thin, artificial components thatcan provide engineered and externally controllable functionalities. The control over these functionalities isenabled by the metasurface tunability, which is implemented by embedded electronic circuits that modifylocally the surface resistance and reactance. Integrating controllers within the metasurface able them tointercommunicate and adaptively reconfigure, thus imparting a desired electromagnetic operation, opens thepath towards the creation of an artificially intelligent (AI) fabric where each unit cell can have its own sensing,programmable computing, and actuation facilities. In this work we take a crucial step towards bringing theAI metasurface technology to emerging applications, in particular exploring the wireless mm-wave intercellcommunication capabilities in a software-defined HyperSurface designed for operation in the microwaveregime. We examine three different wireless communication channels within the landscape of the reflectivemetasurface: Firstly, in the layer where the control electronics of the HyperSurface lie, secondly inside adedicated layer enclosed between two metallic plates, and, thirdly, inside the metasurface itself. For each casewe examine the physical implementation of the mm-wave transceiver nodes, we quantify communicationchannel metrics, and we identify complexity vs. performance trade-offs.Peer ReviewedPostprint (published version

    Beyond 5G Fronthaul based on FSO Using Spread Spectrum Codes and Graphene Modulators.

    Get PDF
    High data rate coverage, security, and energy efficiency will play a key role in the continued performance scaling of next-generation mobile systems. Dense, small mobile cells based on a novel network architecture are part of the answer. Motivated by the recent mounting interest in free-space optical (FSO) technologies, this paper addresses a novel mobile fronthaul network architecture based on FSO, spread spectrum codes, and graphene modulators for the creation of dense small cells. The network uses an energy-efficient graphene modulator to send data bits to be coded with spread codes for achieving higher security before their transmission to remote units via high-speed FSO transmitters. Analytical results show the new fronthaul mobile network can accommodate up to 32 remote antennas under error-free transmissions with forward error correction. Furthermore, the modulator is optimized to provide maximum efficiency in terms of energy consumption per bit. The optimization procedure is carried out by optimizing both the amount of graphene used on the ring resonator and the modulator’s design. The optimized graphene modulator is used in the new fronthaul network and requires as low as 4.6 fJ/bit while enabling high-speed performance up to 42.6 GHz and remarkably using one-quarter of graphene only
    corecore