5,920 research outputs found

    Global topological control for synchronized dynamics on networks

    Full text link
    A general scheme is proposed and tested to control the symmetry breaking instability of a homogeneous solution of a spatially extended multispecies model, defined on a network. The inherent discreteness of the space makes it possible to act on the topology of the inter-nodes contacts to achieve the desired degree of stabilization, without altering the dynamical parameters of the model. Both symmetric and asymmetric couplings are considered. In this latter setting the web of contacts is assumed to be balanced, for the homogeneous equilibrium to exist. The performance of the proposed method are assessed, assuming the Complex Ginzburg-Landau equation as a reference model. In this case, the implemented control allows one to stabilize the synchronous limit cycle, hence time-dependent, uniform solution. A system of coupled real Ginzburg-Landau equations is also investigated to obtain the topological stabilization of a homogeneous and constant fixed point

    Stirring N-body systems: Universality of end states

    Full text link
    We study the evolution of the phase-space of collisionless N-body systems under repeated stirrings or perturbations. We find convergence towards a limited solution group, in accordance with Hansen 2010, that is independent of the initial system and environmental conditions, paying particular attention to the assumed gravitational paradigm (Newtonian and MOND). We examine the effects of changes to the perturbation scheme and in doing so identify a large group of perturbations featuring radial orbit instability (ROI) which always lead to convergence. The attractor is thus found to be a robust and reproducible effect under a variety of circumstances

    Diffusing opinions in bounded confidence processes

    Get PDF
    We study the effects of diffusing opinions on the Deffuant et al. model for continuous opinion dynamics. Individuals are given the opportunity to change their opinion, with a given probability, to a randomly selected opinion inside an interval centered around the present opinion. We show that diffusion induces an order-disorder transition. In the disordered state the opinion distribution tends to be uniform, while for the ordered state a set of well defined opinion clusters are formed, although with some opinion spread inside them. If the diffusion jumps are not large, clusters coalesce, so that weak diffusion favors opinion consensus. A master equation for the process described above is presented. We find that the master equation and the Monte-Carlo simulations do not always agree due to finite-size induced fluctuations. Using a linear stability analysis we can derive approximate conditions for the transition between opinion clusters and the disordered state. The linear stability analysis is compared with Monte Carlo simulations. Novel interesting phenomena are analyzed
    • …
    corecore