761 research outputs found

    On the Permanence of Vertices in Network Communities

    Full text link
    Despite the prevalence of community detection algorithms, relatively less work has been done on understanding whether a network is indeed modular and how resilient the community structure is under perturbations. To address this issue, we propose a new vertex-based metric called "permanence", that can quantitatively give an estimate of the community-like structure of the network. The central idea of permanence is based on the observation that the strength of membership of a vertex to a community depends upon the following two factors: (i) the distribution of external connectivity of the vertex to individual communities and not the total external connectivity, and (ii) the strength of its internal connectivity and not just the total internal edges. In this paper, we demonstrate that compared to other metrics, permanence provides (i) a more accurate estimate of a derived community structure to the ground-truth community and (ii) is more sensitive to perturbations in the network. As a by-product of this study, we have also developed a community detection algorithm based on maximizing permanence. For a modular network structure, the results of our algorithm match well with ground-truth communities.Comment: 10 pages, 5 figures, 8 tables, Accepted in 20th ACM SIGKDD Conference on Knowledge Discovery and Data Minin

    Detecting Stable Communities In Large Scale Networks

    Get PDF
    A network is said to exhibit community structure if the nodes of the network can be easily grouped into groups of nodes, such that each group is densely connected internally but sparsely connected with other groups. Most real world networks exhibit community structure. A popular technique for detecting communities is based on computing the modularity of the network. Modularity reflects how well the vertices in a group are connected as opposed to being randomly connected. We propose a parallel algorithm for detecting modularity in large networks. However, all modularity based algorithms for detecting community structure are affected by the order in which the vertices in the network are processed. Therefore, detecting communities in real world graphs becomes increasingly difficult. We introduce the concept of stable community, that is, a group of vertices that are always partitioned to the same community independent of the vertex perturbations to the input. We develop a preprocessing step that identifies stable communities and empirically show that the number of stable communities in a network affects the range of modularity values obtained. In particular, stable communities can also help determine strong communities in the network. Modularity is a widely accepted metric for measuring the quality of a partition identified by various community detection algorithms. However, a growing number of researchers have started to explore the limitations of modularity maximization such as resolution limit, degeneracy of solutions and asymptotic growth of the modularity value for detecting communities. In order to address these issues we propose a novel vertex-level metric called permanence. We show that our metric permanence as compared to other standard metrics such as modularity, conductance and cut-ratio performs as a better community scoring function for evaluating the detected community structures from both synthetic networks and real-world networks. We demonstarte that maximizing permanence results in communities that match the ground-truth structure of networks more accurately than modularity based and other approaches. Finally, we demonstrate how maximizing permanence overcomes limitations associated with modularity maximization

    Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities

    Full text link
    The rock-paper-scissor game -- which is characterized by three strategies R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and R excludes S -- serves as a simple prototype for studying more complex non-transitive systems. For well-mixed systems where interactions result in fitness reductions of the losers exceeding fitness gains of the winners, classical theory predicts that two strategies go extinct. The effects of spatial heterogeneity and dispersal rates on this outcome are analyzed using a general framework for evolutionary games in patchy landscapes. The analysis reveals that coexistence is determined by the rates at which dominant strategies invade a landscape occupied by the subordinate strategy (e.g. rock invades a landscape occupied by scissors) and the rates at which subordinate strategies get excluded in a landscape occupied by the dominant strategy (e.g. scissor gets excluded in a landscape occupied by rock). These invasion and exclusion rates correspond to eigenvalues of the linearized dynamics near single strategy equilibria. Coexistence occurs when the product of the invasion rates exceeds the product of the exclusion rates. Provided there is sufficient spatial variation in payoffs, the analysis identifies a critical dispersal rate d∗d^* required for regional persistence. For dispersal rates below d∗d^*, the product of the invasion rates exceed the product of the exclusion rates and the rock-paper-scissor metacommunities persist regionally despite being extinction prone locally. For dispersal rates above d∗d^*, the product of the exclusion rates exceed the product of the invasion rates and the strategies are extinction prone. These results highlight the delicate interplay between spatial heterogeneity and dispersal in mediating long-term outcomes for evolutionary games.Comment: 31pages, 5 figure
    • …
    corecore