24,751 research outputs found

    Survey of decentralized control methods

    Get PDF
    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented

    Deterministic Equations for Stochastic Spatial Evolutionary Games

    Get PDF
    Spatial evolutionary games model individuals who are distributed in a spatial domain and update their strategies upon playing a normal form game with their neighbors. We derive integro-differential equations as deterministic approximations of the microscopic updating stochastic processes. This generalizes the known mean-field ordinary differential equations and provide a powerful tool to investigate the spatial effects in populations evolution. The deterministic equations allow to identify many interesting features of the evolution of strategy profiles in a population, such as standing and traveling waves, and pattern formation, especially in replicator-type evolutions

    Supply chain collaboration

    Get PDF
    In the past, research in operations management focused on single-firm analysis. Its goal was to provide managers in practice with suitable tools to improve the performance of their firm by calculating optimal inventory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets and increased competition among firms. Further, more and more products reach the customer through supply chains that are composed of independent firms. Following these trends, research in operations management has shifted its focus from single-firm analysis to multi-firm analysis, in particular to improving the efficiency and performance of supply chains under decentralized control. The main characteristics of such chains are that the firms in the chain are independent actors who try to optimize their individual objectives, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain. These interactions among firms’ decisions ask for alignment and coordination of actions. Therefore, game theory, the study of situations of cooperation or conflict among heterogenous actors, is very well suited to deal with these interactions. This has been recognized by researchers in the field, since there are an ever increasing number of papers that applies tools, methods and models from game theory to supply chain problems

    Tight Bounds for Consensus Systems Convergence

    Full text link
    We analyze the asymptotic convergence of all infinite products of matrices taken in a given finite set, by looking only at finite or periodic products. It is known that when the matrices of the set have a common nonincreasing polyhedral norm, all infinite products converge to zero if and only if all infinite periodic products with period smaller than a certain value converge to zero, and bounds exist on that value. We provide a stronger bound holding for both polyhedral norms and polyhedral seminorms. In the latter case, the matrix products do not necessarily converge to 0, but all trajectories of the associated system converge to a common invariant space. We prove our bound to be tight, in the sense that for any polyhedral seminorm, there is a set of matrices such that not all infinite products converge, but every periodic product with period smaller than our bound does converge. Our technique is based on an analysis of the combinatorial structure of the face lattice of the unit ball of the nonincreasing seminorm. The bound we obtain is equal to half the size of the largest antichain in this lattice. Explicitly evaluating this quantity may be challenging in some cases. We therefore link our problem with the Sperner property: the property that, for some graded posets, -- in this case the face lattice of the unit ball -- the size of the largest antichain is equal to the size of the largest rank level. We show that some sets of matrices with invariant polyhedral seminorms lead to posets that do not have that Sperner property. However, this property holds for the polyhedron obtained when treating sets of stochastic matrices, and our bound can then be easily evaluated in that case. In particular, we show that for the dimension of the space n≄8n \geq 8, our bound is smaller than the previously known bound by a multiplicative factor of 32πn\frac{3}{2 \sqrt{\pi n}}
    • 

    corecore