43,799 research outputs found

    Dynamics of Supervised Learning with Restricted Training Sets

    Full text link
    We study the dynamics of supervised learning in layered neural networks, in the regime where the size pp of the training set is proportional to the number NN of inputs. Here the local fields are no longer described by Gaussian probability distributions. We show how dynamical replica theory can be used to predict the evolution of macroscopic observables, including the relevant performance measures, incorporating the old formalism in the limit α=p/N\alpha=p/N\to\infty as a special case. For simplicity we restrict ourselves to single-layer networks and realizable tasks.Comment: 36 pages, latex2e, 12 eps figures (to be publ in: Proc Newton Inst Workshop on On-Line Learning '97

    Ensemble of Single‐Layered Complex‐Valued Neural Networks for Classification Tasks

    Get PDF
    This paper presents ensemble approaches in single-layered complex-valued neural network (CVNN) to solve real-valued classification problems. Each component CVNN of an ensemble uses a recently proposed activation function for its complex-valued neurons (CVNs). A gradient-descent based learning algorithm was used to train the component CVNNs. We applied two ensemble methods, negative correlation learning and bagging, to create the ensembles. Experimental results on a number of real-world benchmark problems showed a substantial performance improvement of the ensembles over the individual single-layered CVNN classifiers. Furthermore, the generalization performances were nearly equivalent to those obtained by the ensembles of real-valued multilayer neural networks

    Vertical Layering of Quantized Neural Networks for Heterogeneous Inference

    Full text link
    Although considerable progress has been obtained in neural network quantization for efficient inference, existing methods are not scalable to heterogeneous devices as one dedicated model needs to be trained, transmitted, and stored for one specific hardware setting, incurring considerable costs in model training and maintenance. In this paper, we study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one. With this representation, we can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model. To this end, we propose a simple once quantization-aware training (QAT) scheme for obtaining high-performance vertical-layered models. Our design incorporates a cascade downsampling mechanism which allows us to obtain multiple quantized networks from one full precision source model by progressively mapping the higher precision weights to their adjacent lower precision counterparts. Then, with networks of different bit-widths from one source model, multi-objective optimization is employed to train the shared source model weights such that they can be updated simultaneously, considering the performance of all networks. By doing this, the shared weights will be optimized to balance the performance of different quantized models, thus making the weights transferable among different bit widths. Experiments show that the proposed vertical-layered representation and developed once QAT scheme are effective in embodying multiple quantized networks into a single one and allow one-time training, and it delivers comparable performance as that of quantized models tailored to any specific bit-width. Code will be available.Comment: Submitted to IEEE for possible publicatio

    Neural networks grown and self-organized by noise

    Get PDF
    Living neural networks emerge through a process of growth and self-organization that begins with a single cell and results in a brain, an organized and functional computational device. Artificial neural networks, however, rely on human-designed, hand-programmed architectures for their remarkable performance. Can we develop artificial computational devices that can grow and self-organize without human intervention? In this paper, we propose a biologically inspired developmental algorithm that can ‘grow’ a functional, layered neural network from a single initial cell. The algorithm organizes inter-layer connections to construct retinotopic pooling layers. Our approach is inspired by the mechanisms employed by the early visual system to wire the retina to the lateral geniculate nucleus (LGN), days before animals open their eyes. The key ingredients for robust self-organization are an emergent spontaneous spatiotemporal activity wave in the first layer and a local learning rule in the second layer that ‘learns’ the underlying activity pattern in the first layer. The algorithm is adaptable to a wide-range of input-layer geometries, robust to malfunctioning units in the first layer, and so can be used to successfully grow and self-organize pooling architectures of different pool-sizes and shapes. The algorithm provides a primitive procedure for constructing layered neural networks through growth and self-organization. We also demonstrate that networks grown from a single unit perform as well as hand-crafted networks on MNIST. Broadly, our work shows that biologically inspired developmental algorithms can be applied to autonomously grow functional `brains' in-silico

    Neural networks grown and self-organized by noise

    Get PDF
    Living neural networks emerge through a process of growth and self-organization that begins with a single cell and results in a brain, an organized and functional computational device. Artificial neural networks, however, rely on human-designed, hand-programmed architectures for their remarkable performance. Can we develop artificial computational devices that can grow and self-organize without human intervention? In this paper, we propose a biologically inspired developmental algorithm that can 'grow' a functional, layered neural network from a single initial cell. The algorithm organizes inter-layer connections to construct a convolutional pooling layer, a key constituent of convolutional neural networks (CNN's). Our approach is inspired by the mechanisms employed by the early visual system to wire the retina to the lateral geniculate nucleus (LGN), days before animals open their eyes. The key ingredients for robust self-organization are an emergent spontaneous spatiotemporal activity wave in the first layer and a local learning rule in the second layer that 'learns' the underlying activity pattern in the first layer. The algorithm is adaptable to a wide-range of input-layer geometries, robust to malfunctioning units in the first layer, and so can be used to successfully grow and self-organize pooling architectures of different pool-sizes and shapes. The algorithm provides a primitive procedure for constructing layered neural networks through growth and self-organization. Broadly, our work shows that biologically inspired developmental algorithms can be applied to autonomously grow functional 'brains' in-silico.Comment: 21 pages (including 11 pages of appendix
    corecore