101 research outputs found

    Hybrid ARQ with parallel and serial concatenated convolutional codes for next generation wireless communications

    Get PDF
    This research focuses on evaluating the currently used FEC encoding-decoding schemes and improving the performance of error control systems by incorporating these schemes in a hybrid FEC-ARQ environment. Beginning with an overview of wireless communications and the various ARQ protocols, the thesis provides an in-depth explanation of convolutional encoding and Viterbi decoding, turbo (PCCC) and serial concatenated convolutional (SCCC) encoding with their respective MAP decoding strategies.;A type-II hybrid ARQ scheme with SCCCs is proposed for the first time and is a major contribution of this thesis. A vast improvement is seen in the BER performance of the successive individual FEC schemes discussed above. Also, very high throughputs can be achieved when these schemes are incorporated in an adaptive type-II hybrid ARQ system.;Finally, the thesis discusses the equivalence of the PCCCs and the SCCCs and proposes a technique to generate a hybrid code using both schemes

    Serially Concatenated Coded Continuous Phase Modulation for Aeronautical Telemetry

    Get PDF
    This thesis treats the development of bandwidth-efficient serially concatenated coded (SCC) continuous phase modulation (CPM) techniques for aeronautical telemetry. The concatenated code consists of an inner and an outer code, separated by an interleaver in most configurations, and is decoded using relatively simple near-optimum iterative decoding algorithms. CPM waveforms such as shaped-offset quadrature phase shift keying (SOQPSK) and pulse code modulation/frequency modulation (PCM/FM), which are currently used in military satellite and aeronautical telemetry standards, can be viewed as inner codes due to their recursive nature. For the outer codes, this thesis applies serially concatenated convolutional codes (SCCC), turbo-product codes (TPC) and repeat-accumulate codes (RAC) because of their large coding gains, high code rates, and because their decoding algorithms are readily implemented. High-rate codes are of special interest in aeronautical telemetry applications due to recent reductions in available spectrum and ever-increasing demands on data rates. This thesis evaluates the proposed coding schemes with a large set of numerical simulation results and makes a number of recommendations based on these results

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201
    • …
    corecore