572 research outputs found

    Secure Communications in Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.Comment: Accepted by IEEE Transactions on Wireless Communication

    REVIEW OF WIRELESS MIMO CHANNEL MODELS

    Get PDF
    The need to increase spectral efficiency has led to the design of multiple antenna systems for both transmit and receive sides otherwise known as MIMO. Channel modeling forms an integral part of this design. Therefore it is very important to investigate and understand existing MIMO channel models. This paper provides a detailed review of existing MIMO channel models, their characteristics, tradeoffs and challenges. As with most models in the scientific and technical fields, open issues in MIMO channel modeling have also been enumerated. http://dx.doi.org/10.4314/njt.v35i2.2

    Multi-Panel Sparse Base Station Design with Physical Antenna Effects in Massive MU-MIMO

    Get PDF
    A novel base station antenna (BSA) configuration is presented to mitigate degrading physical antenna effects in massive multiple-input multiple-output (MIMO) systems, while minimizing implementation complexities. Instead of using a commonly considered single antenna panel comprising of many elements covering a wide field-of-view (FOV) of 120 degrees, L tilted panels are used employing L times fewer elements and L times smaller FOV per panel. The spatial resolution of each panel is enhanced by employing sparse arrays with suppressed (grating-lobe) radiation outside its corresponding FOV. Therefore, more directive antenna elements can be deployed in each panel to compensate for the effective isotropic radiated power (EIRP) reduction. While sectorisation reduces the antenna gain variation in 120 degrees FOV, cooperation among multiple panels in downlink beamforming is seen to be capable of inter-panel interference suppression for sum-rate enhancement. A network model is used as a multi-user (MU) MIMO simulator incorporating both antenna and channel effects. It is shown that when the number of base station antennas is ten times the number of users, the average downlink sum-rate in pure line-of-sight (LOS), rich and poor multipath environments is increased up to 60.2%, 23% and 11.1%, respectively, by multi-panel sparse arrays applying zero-forcing (ZF) precoding

    Massive hybrid antenna array for millimeter-wave cellular communications

    Full text link
    © 2002-2012 IEEE. A massive hybrid array consists of multiple analog subarrays, with each subarray having its digital processing chain. It offers the potential advantage of balancing cost and performance for massive arrays and therefore serves as an attractive solution for future millimeter-wave (mm- Wave) cellular communications. On one hand, using beamforming analog subarrays such as phased arrays, the hybrid configuration can effectively collect or distribute signal energy in sparse mm-Wave channels. On the other hand, multiple digital chains in the configuration provide multiplexing capability and more beamforming flexibility to the system. In this article, we discuss several important issues and the state-of-the-art development for mm-Wave hybrid arrays, such as channel modeling, capacity characterization, applications of various smart antenna techniques for single-user and multiuser communications, and practical hardware design. We investigate how the hybrid array architecture and special mm-Wave channel property can be exploited to design suboptimal but practical massive antenna array schemes. We also compare two main types of hybrid arrays, interleaved and localized arrays, and recommend that the localized array is a better option in terms of overall performance and hardware feasibility

    Millimeter wave radio channels: properties, multipath modeling and simulations

    Get PDF
    Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modeling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, millimeter wave (mmWave) system properties such as a high antenna directivity and system bandwidth are shown to have a great influence on the channel model definition. In this thesis, a fundamental assumption made in the state-of-the-art millimeter wave wireless channel models is challenged. It has been shown that Rayleigh-Rice fading assumption made in the state-of-the-art channel models for resolvable channel taps does not remain valid. This is mainly due to the sparse multipath illumination caused by high antenna directivity and high bandwidth of a mmWave system.Studies presented in this thesis are based on the characterization of realistic radio channels obtained from exhaustive channel sounding campaigns. Mainly, three fundamental problems of wireless channel modelling have been investigated for millimetre wave (mmWave) radio channel modelling application, namely (i) Frequency dependence of propagation, (ii) Impact of antenna directivity on the channel model definition, and (iii) Impact of system bandwidth on the radio channel modelling. A detailed description of these problems is as follows: (i) Frequency Dependence of Propagation. Multi-band measurement campaigns arecarried out using directional antennas which do an omni-directional scan of the propagation environment. During the measurements, Tx-Rx systems are placed at fixed positions and the propagation environment remained as static as possible. Using synthesized omni-directional power delay profiles (PDPs), we aim to investigate if there exists a frequency dependency in the multipath dispersion statistics, e.g. delay and angular spreads. (ii) Impact of Antenna Directivity on the Channel Model Definition. Small-scale fading measurements are carried out which emulate a scenario, where a radio communication link is established through a single multipath cluster which is illuminated using antennas with different Half Power Beam Widths (HPBW). The major goal here is to investigate the impact of spatial multipath filtering on the small-scale fading due to high antenna directivity. In particular, the impact on variations in the receive signal strength and the validity of narrowband wide-sense stationary assumption (both in time and frequency domains) is investigated. (iii) Impact of System Bandwidth on the Radio Channel Modelling. Small-scale fading measurements are used to illuminate multipath clusters in a lecture room scenario. The primary objective is to investigate the impact of high system bandwidth on variations in the receive signal strength, randomness in the cross-polarization power ratio (XPR) and richness of the multipath scattering. Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modelling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, mmWave system properties such as a high antenna directivity and system bandwidth are shown to have a high influence on the channel model definition. In general, fade depth scaling as a function of system bandwidth is quite well understood. We demonstrate that, the high antenna directivity of mmWave systems result in a further reduction in the fading depth. In addition, we explore some new directions to this line of research which are based on the second-order statistical analysis of the channel impulse response (CIR) vector. Our results emphasize that, fading statistics of resolvable channel taps in a mmWave radio channel cannot be modelled as Rayleigh-Rice distributed random variables. This is primarily due to the fact that channels with sparse scattering conditions are illuminated due to high antenna directivity and bandwidth of mmWave systems. Consequently, the complex Gaussian random variable assumption associated with Rayleigh-Rice fading distributions does not remain valid. Further, it has been demonstrated that, high antenna directivity and bandwidth of mmWave systems also raise a question mark on the validity of wide-sense stationary (WSS) assumption in the slow-time domain of mmWave radio channels. Results presented in this contribution are novel and they provide theoretically consistent insights into the measured radio channel.In dieser Arbeit werden drei grundlegende Probleme der Modellierung von Drahtloskanalen fur die Anwendung bei der Funkkanalmodellierung im Millimeterwellenbereich (mmWave) untersucht, namlich (i) die Frequenzabhangigkeit der Ausbreitung, (ii) der Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells und (iii) der Einfluss der Systembandbreite auf die Funkkanalmodellierung. Die detaillierte Beschreibung dieser Probleme lautet wie folgt: (i) Frequenzabhangigkeit der Ausbreitung. Mehrband-Messkampagnen werden mitRichtantennen durchgefuhrt, die eine omnidirektionale Abtastung der Ausbreitungsumgebung vornehmen. Wahrend der Messungen werden die Tx-Rx-Systeme an festen Positionen platziert und die Ausbreitungsumgebung bleibt so statisch wie moglich. Mit Hilfe von synthetisierten omnidirektionalen Verzogerungs-Leistungsprofilen soll untersucht werden, ob es eine Frequenzabhangigkeit in der Mehrwegeausbreitungsstatistik gibt, z.B. in der Verzogerung und der Winkelspreizung. (ii) Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells. Es werden Messungen des schnellen Schwunds durchgefuhrt, die ein Szenario emulieren, bei dem eine Funkverbindung uber ein einzelnes Mehrwege-Cluster aufgebaut wird, das mit Antennen mit unterschiedlichen Strahlbreiten ausgeleuchtet wird. Das Hauptzielist hier die Untersuchung des Einflusses der raumlichen Filterung auf den schnellen Schwund aufgrund der hohen Antennenrichtwirkung. Insbesondere wird die Auswirkung auf Variationen der Empfangssignalstarke und die Gultigkeit der Annahme der schmalbandigen Stationaritat im weiteren Sinne (sowohl im Zeit- als auch im Frequenzbereich) untersucht. (iii) Einfluss der Systembandbreite auf die Funkkanalmodellierung. Messungen desschnellen Schwunds werden verwendet, um Mehrwege-Cluster in einem Horsaal-Szenario auszuleuchten. Das primare Ziel ist es, den Einfluss einer hohen Systembandbreite auf die Variationen der Empfangssignalstarke, die Zufalligkeit des Kreuzpolarisationsverhaltnisses und die Reichhaltigkeit der Mehrwegstreuung zu untersuchen. Basierend auf der Charakterisierung realistischer Funkkanäle führen die in dieser Dissertation vorgestellten Ergebnisse zu dem Verständnis, dass beim Ubergang zu höheren Frequenzen die Frequenz x selbst keine signifikante Rolle bei der Definition der Kanalmodellierungsmethodik spielt. Vielmehr ist es von grundlegender Bedeutung, wie ein Ausbreitungskanal ausgeleuchtet wird. Daher zeigt sich, dass mmWave-Systemeigenschaften wie eine hohe Antennenrichtcharakteristik und Systembandbreite einen hohen Einfluss auf die Definition des Kanalmodells haben. Im Allgemeinen ist die Skalierung der Schwundtiefe als Funktion der Systembandbreite ziemlich gut verstanden. Wir zeigen, dass die hohe Antennenrichtwirkung von mmWave-Systemen zu einer weiteren Reduzierung der Schwundtiefe führt. Zusätzlich erforschen wir einige neue Richtungen in diesem Forschungsbereich, die auf der Analyse der Statistik zweiter Ordnung des Kanalimpulsantwort-Vektors basieren. Unsere Ergebnisse unterstreichen, dass die Schwund-Statistiken der auflösbaren Kanalabgriffe in einem mmWave-Funkkanal nicht als Rayleigh-Rice-verteilte Zufallsvariablen modelliert werden können. Dies liegt vor allem daran, dass durch die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen Kanale mit spärlichen Streubedingungen ausgeleuchtet werden. Folglich ist die Annahme komplexer Gaus’scher Zufallsvariablen, die mit Rayleigh-Rice Schwundverteilungen verbunden ist, nicht mehr gültig. Des Weiteren wird gezeigt, dass die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen auch die Gültigkeit der Annahme von Stationarität im weiteren Sinne im Slow-Time-Bereich von mmWave-Funkkanälen in Frage stellt. Die in diesem Beitrag vorgestellten Ergebnisse sind neuartig und bieten theoretisch konsistente Einblicke in den gemessenen Funkkanal
    • …
    corecore