24 research outputs found

    Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos

    Get PDF
    In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light dynamical gluinos the low energy features of the dynamics as confinement and bound state mass spectrum are investigated. The motivation is supersymmetry at vanishing gluino mass. The performance of the applied two-step multi-bosonic dynamical fermion algorithm is discussed.Comment: latex, 48 pages, 16 figures with epsfi

    Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999

    ISCR Annual Report: Fical Year 2004

    Full text link

    Multidimensional computation and visualisation for marine controlled source electromagnetic methods

    Get PDF
    The controlled source electromagnetic method is improving the search for oil and gas in marine settings and is becoming an integral component of many exploration toolkits. While the level of detail and benefit obtained from recorded electromagnetic data sets is limited to the tools available, interpretation is fundamentally restricted by non-unique and equivalent solutions. I create the tools necessary to rapidly compute and visualise multi-dimensional electromagnetic fields generated for a variety of controlled source electromagnetic surveys. This thesis is divided into two parts: the creation of an electromagnetic software framework and the electromagnetic research applications.The creation of a new electromagnetic software framework is covered in Part I. Steps to create and test a modern electromagnetic data structure, three-dimensional visualisation and interactive graphical user interface from the ground up are presented. Bringing together several computer science disciplines ranging from parallel computing, networking and computer human interaction to three-dimensional visualisation, a package specifically tailored to marine controlled source electromagnetic compuation is formed. The electromagnetic framework is comprised of approximately 100,000 lines of new Java code and several third party libraries, which provides low-level graphical, network and execution cross-platform functionality. The software provides a generic framework to integrate most computational engines and algorithms into the coherent global electromagnetic package enabling the interactive forward modelling, inversion and visualisation of electromagnetic data.Part II is comprised of several research applications utilising the developed electromagnetic software framework. Cloud computing and streamline visualisation are covered. These topics are covered to solve several problems in modern controlled source electromagnetic methods. Large 3D electromagnetic modelling and inversion may require days or even weeks to be performed on a single-threaded personal computers. A massively parallelised electromagnetic forward modelling and inversion methods can dramatically was created to improve computational time. The developed ’macro’ parallelisation method facilitated the reduction in computational time by several orders of magnitude with relatively little additional effort and without modification of the internal electromagnetic algorithm. The air wave is a significant component of marine controlled source electromagnetic surveys however there is controversy and confusion over its defintion. The airwave has been described as a reflected, refracted, direct or diffusing wave, which has lead to confusion over its physical reality

    Compressed Optical Imaging

    Get PDF
    We address the resolution of inverse problems where visual data must be recovered from incomplete information optically acquired in the spatial domain. The optical acquisition models that are involved share a common mathematical structure consisting of a linear operator followed by optional pointwise nonlinearities. The linear operator generally includes lowpass filtering effects and, in some cases, downsampling. Both tend to make the problems ill-posed. Our general resolution strategy is to rely on variational principles, which allows for a tight control on the objective or perceptual quality of the reconstructed data. The three related problems that we investigate and propose to solve are 1. The reconstruction of images from sparse samples. Following a non-ideal acquisition framework, the measurements take the form of spatial-domain samples whose locations are specified a priori. The reconstruction algorithm that we propose is linked to PDE flows with tensor-valued diffusivities. We demonstrate through several experiments that our approach preserves finer visual features than standard interpolation techniques do, especially at very low sampling rates. 2. The reconstruction of images from binary measurements. The acquisition model that we consider relies on optical principles and fits in a compressed-sensing framework. We develop a reconstruction algorithm that allows us to recover grayscale images from the available binary data. It substantially improves upon the state of the art in terms of quality and computational performance. Our overall approach is physically relevant; moreover, it can handle large amounts of data efficiently. 3. The reconstruction of phase and amplitude profiles from single digital holographic acquisitions. Unlike conventional approaches that are based on demodulation, our iterative reconstruction method is able to accurately recover the original object from a single downsampled intensity hologram, as shown in simulated and real measurement settings. It also consistently outperforms the state of the art in terms of signal-to-noise ratio and with respect to the size of the field of view. The common goal of the proposed reconstruction methods is to yield an accurate estimate of the original data from all available measurements. In accordance with the forward model, they are typically capable of handling samples that are sparse in the spatial domain and/or distorted due to pointwise nonlinear effects, as demonstrated in our experiments

    Parallel Preconditioners for an Ocean Model in Climate Simulations

    Get PDF
    In this work, we evaluate different solvers and preconditioners for solving the barotropic system of an ocean model to achieve optimal performance on a high-performance computer. In the field of support theory, we derive upper bounds for the condition number of a system that is preconditioned with a block-Jacobi Steiner graph preconditioner. Furthermore, we analyze the application of a high-level approach for programming preconditioners on FPGAs

    ISCR annual report FY 1998

    Full text link

    Parallel algorithms for nonlinear optimization

    Get PDF
    Parallel algorithm design is a very active research topic in optimization as parallel computer architectures have recently become easily accessible. This thesis is about an approach for designing parallel nonlinear programming algorithms. The main idea is to benefit from parallelization in designing new algorithms rather than considering direct parallelizations of the existing methods. We give a general framework following our approach, and then, give distinct algorithms that fit into this framework. The example algorithms we have designed either use procedures of existing methods within a multistart scheme, or they are completely new inherently parallel algorithms. In doing so, we try to show how it is possible to achieve parallelism in algorithm structure (at different levels) so that the resulting algorithms have a good solution performance in terms of robustness, quality of steps, and scalability. We complement our discussion with convergence proofs of the proposed algorithms

    A Taylor polynomial expansion line search for large-scale optimization

    Get PDF
    In trying to cope with the Big Data deluge, the landscape of distributed computing has changed. Large commodity hardware clusters, typically operating in some form of MapReduce framework, are becoming prevalent for organizations that require both tremendous storage capacity and fault tolerance. However, the high cost of communication can dominate the computation time in large-scale optimization routines in these frameworks. This thesis considers the problem of how to efficiently conduct univariate line searches in commodity clusters in the context of gradient-based batch optimization algorithms, like the staple limited-memory BFGS (LBFGS) method. In it, a new line search technique is proposed for cases where the underlying objective function is analytic, as in logistic regression and low rank matrix factorization. The technique approximates the objective function by a truncated Taylor polynomial along a fixed search direction. The coefficients of this polynomial may be computed efficiently in parallel with far less communication than needed to transmit the high-dimensional gradient vector, after which the polynomial may be minimized with high accuracy in a neighbourhood of the expansion point without distributed operations. This Polynomial Expansion Line Search (PELS) may be invoked iteratively until the expansion point and minimum are sufficiently accurate, and can provide substantial savings in time and communication costs when multiple iterations in the line search procedure are required. Three applications of the PELS technique are presented herein for important classes of analytic functions: (i) logistic regression (LR), (ii) low-rank matrix factorization (MF) models, and (iii) the feedforward multilayer perceptron (MLP). In addition, for LR and MF, implementations of PELS in the Apache Spark framework for fault-tolerant cluster computing are provided. These implementations conferred significant convergence enhancements to their respective algorithms, and will be of interest to Spark and Hadoop practitioners. For instance, the Spark PELS technique reduced the number of iterations and time required by LBFGS to reach terminal training accuracies for LR models by factors of 1.8--2. Substantial acceleration was also observed for the Nonlinear Conjugate Gradient algorithm for MLP models, which is an interesting case for future study in optimization for neural networks. The PELS technique is applicable to a broad class of models for Big Data processing and large-scale optimization, and can be a useful component of batch optimization routines

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015
    corecore