6,903 research outputs found

    Pfaffian Correlation Functions of Planar Dimer Covers

    Full text link
    The Pfaffian structure of the boundary monomer correlation functions in the dimer-covering planar graph models is rederived through a combinatorial / topological argument. These functions are then extended into a larger family of order-disorder correlation functions which are shown to exhibit Pfaffian structure throughout the bulk. Key tools involve combinatorial switching symmetries which are identified through the loop-gas representation of the double dimer model, and topological implications of planarity.Comment: Revised figures; corrected misprint

    Kac-Ward formula and its extension to order-disorder correlators through a graph zeta function

    Full text link
    A streamlined derivation of the Kac-Ward formula for the planar Ising model's partition function is presented and applied in relating the kernel of the Kac-Ward matrices' inverse with the correlation functions of the Ising model's order-disorder correlation functions. A shortcut for both is facilitated by the Bowen-Lanford graph zeta function relation. The Kac-Ward relation is also extended here to produce a family of non planar interactions on Z2\mathbb{Z}^2 for which the partition function and the order-disorder correlators are solvable at special values of the coupling parameters/temperature.Comment: An extension of the Kac-Ward determinantal formula beyond planarity was added (Section 5). To appear in Journal of Statistical Physic

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

    Get PDF
    In this work, we consider the Combinatorial RNA Design problem, a minimal instance of the RNA design problem which aims at finding a sequence that admits a given target as its unique base pair maximizing structure. We provide complete characterizations for the structures that can be designed using restricted alphabets. Under a classic four-letter alphabet, we provide a complete characterization of designable structures without unpaired bases. When unpaired bases are allowed, we provide partial characterizations for classes of designable/undesignable structures, and show that the class of designable structures is closed under the stutter operation. Membership of a given structure to any of the classes can be tested in linear time and, for positive instances, a solution can be found in linear time. Finally, we consider a structure-approximating version of the problem that allows to extend bands (helices) and, assuming that the input structure avoids two motifs, we provide a linear-time algorithm that produces a designable structure with at most twice more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun 2015, Ischia Island, Italy. LNCS, 201

    Revisiting the combinatorics of the 2D Ising model

    Full text link
    We provide a concise exposition with original proofs of combinatorial formulas for the 2D Ising model partition function, multi-point fermionic observables, spin and energy density correlations, for general graphs and interaction constants, using the language of Kac-Ward matrices. We also give a brief account of the relations between various alternative formalisms which have been used in the combinatorial study of the planar Ising model: dimers and Grassmann variables, spin and disorder operators, and, more recently, s-holomorphic observables. In addition, we point out that these formulas can be extended to the double-Ising model, defined as a pointwise product of two Ising spin configurations on the same discrete domain, coupled along the boundary.Comment: Minor change in the notation (definition of eta). 55 pages, 4 figure
    • …
    corecore