672 research outputs found

    Zero forcing in iterated line digraphs

    Full text link
    Zero forcing is a propagation process on a graph, or digraph, defined in linear algebra to provide a bound for the minimum rank problem. Independently, zero forcing was introduced in physics, computer science and network science, areas where line digraphs are frequently used as models. Zero forcing is also related to power domination, a propagation process that models the monitoring of electrical power networks. In this paper we study zero forcing in iterated line digraphs and provide a relationship between zero forcing and power domination in line digraphs. In particular, for regular iterated line digraphs we determine the minimum rank/maximum nullity, zero forcing number and power domination number, and provide constructions to attain them. We conclude that regular iterated line digraphs present optimal minimum rank/maximum nullity, zero forcing number and power domination number, and apply our results to determine those parameters on some families of digraphs often used in applications

    A Greedy Partition Lemma for Directed Domination

    Get PDF
    A directed dominating set in a directed graph DD is a set SS of vertices of VV such that every vertex uV(D)Su \in V(D) \setminus S has an adjacent vertex vv in SS with vv directed to uu. The directed domination number of DD, denoted by γ(D)\gamma(D), is the minimum cardinality of a directed dominating set in DD. The directed domination number of a graph GG, denoted Γd(G)\Gamma_d(G), which is the maximum directed domination number γ(D)\gamma(D) over all orientations DD of GG. The directed domination number of a complete graph was first studied by Erd\"{o}s [Math. Gaz. 47 (1963), 220--222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α\alpha denotes the independence number of a graph GG, we show that αΓd(G)α(1+2ln(n/α))\alpha \le \Gamma_d(G) \le \alpha(1+2\ln(n/\alpha)).Comment: 12 page
    corecore