66,307 research outputs found

    Regulating a multiproduct and multitype monopolist

    Get PDF
    I study the optimal regulation of a firm producing two goods. The firm has private information about its cost of producing either of the goods. I explore the ways in which the optimal allocation differs from its one dimensional counterpart. With binding constraints in both dimensions, the allocation involves distortions for the most efficient producers and features overproduction for some less efficient types

    Computing Equilibrium in Matching Markets

    Full text link
    Market equilibria of matching markets offer an intuitive and fair solution for matching problems without money with agents who have preferences over the items. Such a matching market can be viewed as a variation of Fisher market, albeit with rather peculiar preferences of agents. These preferences can be described by piece-wise linear concave (PLC) functions, which however, are not separable (due to each agent only asking for one item), are not monotone, and do not satisfy the gross substitute property-- increase in price of an item can result in increased demand for the item. Devanur and Kannan in FOCS 08 showed that market clearing prices can be found in polynomial time in markets with fixed number of items and general PLC preferences. They also consider Fischer markets with fixed number of agents (instead of fixed number of items), and give a polynomial time algorithm for this case if preferences are separable functions of the items, in addition to being PLC functions. Our main result is a polynomial time algorithm for finding market clearing prices in matching markets with fixed number of different agent preferences, despite that the utility corresponding to matching markets is not separable. We also give a simpler algorithm for the case of matching markets with fixed number of different items

    Error Rates of the Maximum-Likelihood Detector for Arbitrary Constellations: Convex/Concave Behavior and Applications

    Get PDF
    Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fading is never good in low dimensions") and optimization of a unitary-precoded OFDM system. For example, the error rate bounds of a unitary-precoded OFDM system with QPSK modulation, which reveal the best and worst precoding, are extended to arbitrary constellations, which may also include coding. The reported results also apply to the interference channel under Gaussian approximation, to the bit error rate when it can be expressed or approximated as a non-negative linear combination of individual symbol error rates, and to coded systems.Comment: accepted by IEEE IT Transaction

    A Nonlinear Approach to Robust Routing Based on Reinforcement Learning with State Space Compression and Adaptive Basis Construction

    Get PDF
    corecore