3,799 research outputs found

    Communication Over a Wireless Network With Random Connections

    Get PDF
    A network of nodes in which pairs communicate over a shared wireless medium is analyzed. We consider the maximum total aggregate traffic flow possible as given by the number of users multiplied by their data rate. The model in this paper differs substantially from the many existing approaches in that the channel connections in this network are entirely random: rather than being governed by geometry and a decay-versus-distance law, the strengths of the connections between nodes are drawn independently from a common distribution. Such a model is appropriate for environments where the first-order effect that governs the signal strength at a receiving node is a random event (such as the existence of an obstacle), rather than the distance from the transmitter. It is shown that the aggregate traffic flow as a function of the number of nodes n is a strong function of the channel distribution. In particular, for certain distributions the aggregate traffic flow is at least n/(log n)^d for some d≫0, which is significantly larger than the O(sqrt n) results obtained for many geometric models. The results provide guidelines for the connectivity that is needed for large aggregate traffic. The relation between the proposed model and existing distance-based models is shown in some cases

    Energy-delay bounds analysis in wireless multi-hop networks with unreliable radio links

    Get PDF
    Energy efficiency and transmission delay are very important parameters for wireless multi-hop networks. Previous works that study energy efficiency and delay are based on the assumption of reliable links. However, the unreliability of the channel is inevitable in wireless multi-hop networks. This paper investigates the trade-off between the energy consumption and the end-to-end delay of multi-hop communications in a wireless network using an unreliable link model. It provides a closed form expression of the lower bound on the energy-delay trade-off for different channel models (AWGN, Raleigh flat fading and Nakagami block-fading) in a linear network. These analytical results are also verified in 2-dimensional Poisson networks using simulations. The main contribution of this work is the use of a probabilistic link model to define the energy efficiency of the system and capture the energy-delay trade-offs. Hence, it provides a more realistic lower bound on both the energy efficiency and the energy-delay trade-off since it does not restrict the study to the set of perfect links as proposed in earlier works

    Random Access Transport Capacity

    Full text link
    We develop a new metric for quantifying end-to-end throughput in multihop wireless networks, which we term random access transport capacity, since the interference model presumes uncoordinated transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions, multiplied by the communication distance, and normalized by the network area. We show that a simple upper bound on this quantity is computable in closed-form in terms of key network parameters when the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a line between the source and destination. We also derive the optimum number of hops and optimal per hop success probability and show that our result follows the well-known square root scaling law while providing exact expressions for the preconstants as well. Numerical results demonstrate that the upper bound is accurate for the purpose of determining the optimal hop count and success (or outage) probability.Comment: Submitted to IEEE Trans. on Wireless Communications, Sept. 200

    Energy distribution control in wireless sensor networks through range optimization

    Get PDF
    A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient use of nodes. Routing decision and transmission power selection are intrinsically connected since the transmission power of a node is adjusted depending on the location of the next hop. In this paper, we propose a location-based routing framework to control the energy distribution in a network where transmission ranges, hence powers, of nodes are determined based on their locations. We show that the proposed framework is sufficiently general to investigate the minimum-energy and maximum-lifetime routing problems. It is shown that via the location based strategy the network lifetime can be improved by 70% and the total energy consumption can be decreased to three-fourths to one-third of the constant transmission range strategy depending on the propagation medium and the size of the network

    An Energy Driven Architecture for Wireless Sensor Networks

    Full text link
    Most wireless sensor networks operate with very limited energy sources-their batteries, and hence their usefulness in real life applications is severely constrained. The challenging issues are how to optimize the use of their energy or to harvest their own energy in order to lengthen their lives for wider classes of application. Tackling these important issues requires a robust architecture that takes into account the energy consumption level of functional constituents and their interdependency. Without such architecture, it would be difficult to formulate and optimize the overall energy consumption of a wireless sensor network. Unlike most current researches that focus on a single energy constituent of WSNs independent from and regardless of other constituents, this paper presents an Energy Driven Architecture (EDA) as a new architecture and indicates a novel approach for minimising the total energy consumption of a WS
    • …
    corecore