5,797 research outputs found

    Efficient Algorithms for Coastal Geographic Problems

    Get PDF
    The increasing performance of computers has made it possible to solve algorithmically problems for which manual and possibly inaccurate methods have been previously used. Nevertheless, one must still pay attention to the performance of an algorithm if huge datasets are used or if the problem iscomputationally difficult. Two geographic problems are studied in the articles included in this thesis. In the first problem the goal is to determine distances from points, called study points, to shorelines in predefined directions. Together with other in-formation, mainly related to wind, these distances can be used to estimate wave exposure at different areas. In the second problem the input consists of a set of sites where water quality observations have been made and of the results of the measurements at the different sites. The goal is to select a subset of the observational sites in such a manner that water quality is still measured in a sufficient accuracy when monitoring at the other sites is stopped to reduce economic cost. Most of the thesis concentrates on the first problem, known as the fetch length problem. The main challenge is that the two-dimensional map is represented as a set of polygons with millions of vertices in total and the distances may also be computed for millions of study points in several directions. Efficient algorithms are developed for the problem, one of them approximate and the others exact except for rounding errors. The solutions also differ in that three of them are targeted for serial operation or for a small number of CPU cores whereas one, together with its further developments, is suitable also for parallel machines such as GPUs.Tietokoneiden suorituskyvyn kasvaminen on tehnyt mahdolliseksi ratkaista algoritmisesti ongelmia, joita on aiemmin tarkasteltu paljon ihmistyötä vaativilla, mahdollisesti epätarkoilla, menetelmillä. Algoritmien suorituskykyyn on kuitenkin toisinaan edelleen kiinnitettävä huomiota lähtömateriaalin suuren määrän tai ongelman laskennallisen vaikeuden takia. Väitöskirjaansisältyvissäartikkeleissatarkastellaankahtamaantieteellistä ongelmaa. Ensimmäisessä näistä on määritettävä etäisyyksiä merellä olevista pisteistä lähimpään rantaviivaan ennalta määrätyissä suunnissa. Etäisyyksiä ja tuulen voimakkuutta koskevien tietojen avulla on mahdollista arvioida esimerkiksi aallokon voimakkuutta. Toisessa ongelmista annettuna on joukko tarkkailuasemia ja niiltä aiemmin kerättyä tietoa erilaisista vedenlaatua kuvaavista parametreista kuten sameudesta ja ravinteiden määristä. Tehtävänä on valita asemajoukosta sellainen osa joukko, että vedenlaatua voidaan edelleen tarkkailla riittävällä tarkkuudella, kun mittausten tekeminen muilla havaintopaikoilla lopetetaan kustannusten säästämiseksi. Väitöskirja keskittyy pääosin ensimmäisen ongelman, suunnattujen etäisyyksien, ratkaisemiseen. Haasteena on se, että tarkasteltava kaksiulotteinen kartta kuvaa rantaviivan tyypillisesti miljoonista kärkipisteistä koostuvana joukkonapolygonejajaetäisyyksiäonlaskettavamiljoonilletarkastelupisteille kymmenissä eri suunnissa. Ongelmalle kehitetään tehokkaita ratkaisutapoja, joista yksi on likimääräinen, muut pyöristysvirheitä lukuun ottamatta tarkkoja. Ratkaisut eroavat toisistaan myös siinä, että kolme menetelmistä on suunniteltu ajettavaksi sarjamuotoisesti tai pienellä määrällä suoritinytimiä, kun taas yksi menetelmistä ja siihen tehdyt parannukset soveltuvat myös voimakkaasti rinnakkaisille laitteille kuten GPU:lle. Vedenlaatuongelmassa annetulla asemajoukolla on suuri määrä mahdollisia osajoukkoja. Lisäksi tehtävässä käytetään aikaa vaativia operaatioita kuten lineaarista regressiota, mikä entisestään rajoittaa sitä, kuinka monta osajoukkoa voidaan tutkia. Ratkaisussa käytetäänkin heuristiikkoja, jotkaeivät välttämättä tuota optimaalista lopputulosta.Siirretty Doriast

    Integration-free Learning of Flow Maps

    Full text link
    We present a method for learning neural representations of flow maps from time-varying vector field data. The flow map is pervasive within the area of flow visualization, as it is foundational to numerous visualization techniques, e.g. integral curve computation for pathlines or streaklines, as well as computing separation/attraction structures within the flow field. Yet bottlenecks in flow map computation, namely the numerical integration of vector fields, can easily inhibit their use within interactive visualization settings. In response, in our work we seek neural representations of flow maps that are efficient to evaluate, while remaining scalable to optimize, both in computation cost and data requirements. A key aspect of our approach is that we can frame the process of representation learning not in optimizing for samples of the flow map, but rather, a self-consistency criterion on flow map derivatives that eliminates the need for flow map samples, and thus numerical integration, altogether. Central to realizing this is a novel neural network design for flow maps, coupled with an optimization scheme, wherein our representation only requires the time-varying vector field for learning, encoded as instantaneous velocity. We show the benefits of our method over prior works in terms of accuracy and efficiency across a range of 2D and 3D time-varying vector fields, while showing how our neural representation of flow maps can benefit unsteady flow visualization techniques such as streaklines, and the finite-time Lyapunov exponent

    Performance analysis and optimization of automatic speech recognition

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fast and accurate Automatic Speech Recognition (ASR) is emerging as a key application for mobile devices. Delivering ASR on such devices is challenging due to the compute-intensive nature of the problem and the power constraints of embedded systems. In this paper, we provide a performance and energy characterization of Pocketsphinx, a popular toolset for ASR that targets mobile devices. We identify the computation of the Gaussian Mixture Model (GMM) as the main bottleneck, consuming more than 80 percent of the execution time. The CPI stack analysis shows that branches and main memory accesses are the main performance limiting factors for GMM computation. We propose several software-level optimizations driven by the power/performance analysis. Unlike previous proposals that trade accuracy for performance by reducing the number of Gaussians evaluated, we maintain accuracy and improve performance by effectively using the underlying CPU microarchitecture. First, we use a refactored implementation of the innermost loop of the GMM evaluation code to ameliorate the impact of branches. Second, we exploit the vector unit available on most modern CPUs to boost GMM computation, introducing a novel memory layout for storing the means and variances of the Gaussians in order to maximize the effectiveness of vectorization. Third, we compute the Gaussians for multiple frames in parallel, so means and variances can be fetched once in the on-chip caches and reused across multiple frames, significantly reducing memory bandwidth usage. We evaluate our optimizations using both hardware counters on real CPUs and simulations. Our experimental results show that the proposed optimizations provide 2.68x speedup over the baseline Pocketsphinx decoder on a high-end Intel Skylake CPU, while achieving 61 percent energy savings. On a modern ARM Cortex-A57 mobile processor our techniques improve performance by 1.85x, while providing 59 percent energy savings without any loss in the accuracy of the ASR system.Peer ReviewedPostprint (author's final draft

    Perceptually optimized real-time computer graphics

    Get PDF
    Perceptual optimization, the application of human visual perception models to remove imperceptible components in a graphics system, has been proven effective in achieving significant computational speedup. Previous implementations of this technique have focused on spatial level of detail reduction, which typically results in noticeable degradation of image quality. This thesis introduces refresh rate modulation (RRM), a novel perceptual optimization technique that produces better performance enhancement while more effectively preserving image quality and resolving static scene elements in full detail. In order to demonstrate the effectiveness of this technique, a graphics framework has been developed that interfaces with eye tracking hardware to take advantage of user fixation data in real-time. Central to the framework is a high-performance GPGPU ray-tracing engine written in OpenCL. RRM reduces the frequency with which pixels outside of the foveal region are updated by the ray-tracer. A persistent pixel buffer is maintained such that peripheral data from previous frames provides context for the foveal image in the current frame. Traditional optimization techniques have also been incorporated into the ray-tracer for improved performance. Applying the RRM technique to the ray-tracing engine results in a speedup of 2.27 (252 fps vs. 111 fps at 1080p) for the classic Whitted scene with reflection and transmission enabled. A speedup of 3.41 (140 fps vs. 41 fps at 1080p) is observed for a high-polygon scene that depicts the Stanford Bunny. A small pilot study indicates that RRM achieves these results with minimal impact to perceived image quality. A secondary investigation is conducted regarding the performance benefits of increasing physics engine error tolerance for bounding volume hierarchy based collision detection when the scene elements involved are in the user\u27s periphery. The open-source Bullet Physics Library was used to add accurate collision detection to the full resolution ray-tracing engine. For a scene with a static high-polygon model and 50 moving spheres, a speedup of 1.8 was observed for physics calculations. The development and integration of this subsystem demonstrates the extensibility of the graphics framework

    Performance-Aware High-Performance Computing for Remote Sensing Big Data Analytics

    Get PDF
    The incredible increase in the volume of data emerging along with recent technological developments has made the analysis processes which use traditional approaches more difficult for many organizations. Especially applications involving subjects that require timely processing and big data such as satellite imagery, sensor data, bank operations, web servers, and social networks require efficient mechanisms for collecting, storing, processing, and analyzing these data. At this point, big data analytics, which contains data mining, machine learning, statistics, and similar techniques, comes to the help of organizations for end-to-end managing of the data. In this chapter, we introduce a novel high-performance computing system on the geo-distributed private cloud for remote sensing applications, which takes advantages of network topology, exploits utilization and workloads of CPU, storage, and memory resources in a distributed fashion, and optimizes resource allocation for realizing big data analytics efficiently

    ISP: An optimal out-of-core image-set processing streaming architecture for parallel heterogeneous systems

    Get PDF
    Journal ArticleImage population analysis is the class of statistical methods that plays a central role in understanding the development, evolution, and disease of a population. However, these techniques often require excessive computational power and memory that are compounded with a large number of volumetric inputs. Restricted access to supercomputing power limits its influence in general research and practical applications. In this paper we introduce ISP, an Image-Set Processing streaming framework that harnesses the processing power of commodity heterogeneous CPU/GPU systems and attempts to solve this computational problem. In ISP, we introduce specially designed streaming algorithms and data structures that provide an optimal solution for out-of-core multiimage processing problems both in terms of memory usage and computational efficiency. ISP makes use of the asynchronous execution mechanism supported by parallel heterogeneous systems to efficiently hide the inherent latency of the processing pipeline of out-of-core approaches. Consequently, with computationally intensive problems, the ISP out-of-core solution can achieve the same performance as the in-core solution. We demonstrate the efficiency of the ISP framework on synthetic and real datasets
    corecore