371 research outputs found

    Online Local Learning via Semidefinite Programming

    Full text link
    In many online learning problems we are interested in predicting local information about some universe of items. For example, we may want to know whether two items are in the same cluster rather than computing an assignment of items to clusters; we may want to know which of two teams will win a game rather than computing a ranking of teams. Although finding the optimal clustering or ranking is typically intractable, it may be possible to predict the relationships between items as well as if you could solve the global optimization problem exactly. Formally, we consider an online learning problem in which a learner repeatedly guesses a pair of labels (l(x), l(y)) and receives an adversarial payoff depending on those labels. The learner's goal is to receive a payoff nearly as good as the best fixed labeling of the items. We show that a simple algorithm based on semidefinite programming can obtain asymptotically optimal regret in the case where the number of possible labels is O(1), resolving an open problem posed by Hazan, Kale, and Shalev-Schwartz. Our main technical contribution is a novel use and analysis of the log determinant regularizer, exploiting the observation that log det(A + I) upper bounds the entropy of any distribution with covariance matrix A.Comment: 10 page

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT

    Subsampling Mathematical Relaxations and Average-case Complexity

    Full text link
    We initiate a study of when the value of mathematical relaxations such as linear and semidefinite programs for constraint satisfaction problems (CSPs) is approximately preserved when restricting the instance to a sub-instance induced by a small random subsample of the variables. Let CC be a family of CSPs such as 3SAT, Max-Cut, etc., and let Π\Pi be a relaxation for CC, in the sense that for every instance P∈CP\in C, Π(P)\Pi(P) is an upper bound the maximum fraction of satisfiable constraints of PP. Loosely speaking, we say that subsampling holds for CC and Π\Pi if for every sufficiently dense instance P∈CP \in C and every ϵ>0\epsilon>0, if we let P′P' be the instance obtained by restricting PP to a sufficiently large constant number of variables, then Π(P′)∈(1±ϵ)Π(P)\Pi(P') \in (1\pm \epsilon)\Pi(P). We say that weak subsampling holds if the above guarantee is replaced with Π(P′)=1−Θ(γ)\Pi(P')=1-\Theta(\gamma) whenever Π(P)=1−γ\Pi(P)=1-\gamma. We show: 1. Subsampling holds for the BasicLP and BasicSDP programs. BasicSDP is a variant of the relaxation considered by Raghavendra (2008), who showed it gives an optimal approximation factor for every CSP under the unique games conjecture. BasicLP is the linear programming analog of BasicSDP. 2. For tighter versions of BasicSDP obtained by adding additional constraints from the Lasserre hierarchy, weak subsampling holds for CSPs of unique games type. 3. There are non-unique CSPs for which even weak subsampling fails for the above tighter semidefinite programs. Also there are unique CSPs for which subsampling fails for the Sherali-Adams linear programming hierarchy. As a corollary of our weak subsampling for strong semidefinite programs, we obtain a polynomial-time algorithm to certify that random geometric graphs (of the type considered by Feige and Schechtman, 2002) of max-cut value 1−γ1-\gamma have a cut value at most 1−γ/101-\gamma/10.Comment: Includes several more general results that subsume the previous version of the paper

    Convex Relaxations of Probabilistic AC Optimal Power Flow for Interconnected AC and HVDC Grids

    Get PDF
    High Voltage Direct Current (HVDC) systems interconnect AC grids to increase reliability, connect offshore wind generation, and enable coupling of electricity markets. Considering the growing uncertainty in power infeed and the complexity introduced by additional controls, robust decision support tools are necessary. This paper proposes a chance constrained AC-OPF for AC and HVDC grids, which considers wind uncertainty, fully utilizes HVDC control capabilities, and uses the semidefinite relaxation of the AC-OPF. We consider a joint chance constraint for both AC and HVDC systems, we introduce a piecewise affine approximation to achieve tractability of the chance constraint, and we allow corrective control policies for HVDC converters and generators to be determined. An active loss penalty term in the objective function and a systematic procedure to choose the penalty weights allow us to obtain AC-feasible solutions. We introduce Benders decomposition to maintain scalability. Using realistic forecast data, we demonstrate our approach on a 53-bus and a 214-bus AC-DC system, obtaining tight near-global optimality guarantees. With a Monte Carlo analysis, we show that a chance constrained DC-OPF leads to violations, whereas our proposed approach complies with the joint chance constraint

    Multireference Alignment using Semidefinite Programming

    Full text link
    The multireference alignment problem consists of estimating a signal from multiple noisy shifted observations. Inspired by existing Unique-Games approximation algorithms, we provide a semidefinite program (SDP) based relaxation which approximates the maximum likelihood estimator (MLE) for the multireference alignment problem. Although we show that the MLE problem is Unique-Games hard to approximate within any constant, we observe that our poly-time approximation algorithm for the MLE appears to perform quite well in typical instances, outperforming existing methods. In an attempt to explain this behavior we provide stability guarantees for our SDP under a random noise model on the observations. This case is more challenging to analyze than traditional semi-random instances of Unique-Games: the noise model is on vertices of a graph and translates into dependent noise on the edges. Interestingly, we show that if certain positivity constraints in the SDP are dropped, its solution becomes equivalent to performing phase correlation, a popular method used for pairwise alignment in imaging applications. Finally, we show how symmetry reduction techniques from matrix representation theory can simplify the analysis and computation of the SDP, greatly decreasing its computational cost

    Computational Hardness of Certifying Bounds on Constrained PCA Problems

    Get PDF
    Given a random n×n symmetric matrix W drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form x⊤Wx over all vectors x in a constraint set S⊂Rn. For a certain class of normalized constraint sets S we show that, conditional on certain complexity-theoretic assumptions, there is no polynomial-time algorithm certifying a better upper bound than the largest eigenvalue of W. A notable special case included in our results is the hypercube S={±1/n−−√}n, which corresponds to the problem of certifying bounds on the Hamiltonian of the Sherrington-Kirkpatrick spin glass model from statistical physics. Our proof proceeds in two steps. First, we give a reduction from the detection problem in the negatively-spiked Wishart model to the above certification problem. We then give evidence that this Wishart detection problem is computationally hard below the classical spectral threshold, by showing that no low-degree polynomial can (in expectation) distinguish the spiked and unspiked models. This method for identifying computational thresholds was proposed in a sequence of recent works on the sum-of-squares hierarchy, and is believed to be correct for a large class of problems. Our proof can be seen as constructing a distribution over symmetric matrices that appears computationally indistinguishable from the GOE, yet is supported on matrices whose maximum quadratic form over x∈S is much larger than that of a GOE matrix.ISSN:1868-896

    Mixed-integer Nonlinear Optimization: a hatchery for modern mathematics

    Get PDF
    The second MFO Oberwolfach Workshop on Mixed-Integer Nonlinear Programming (MINLP) took place between 2nd and 8th June 2019. MINLP refers to one of the hardest Mathematical Programming (MP) problem classes, involving both nonlinear functions as well as continuous and integer decision variables. MP is a formal language for describing optimization problems, and is traditionally part of Operations Research (OR), which is itself at the intersection of mathematics, computer science, engineering and econometrics. The scientific program has covered the three announced areas (hierarchies of approximation, mixed-integer nonlinear optimal control, and dealing with uncertainties) with a variety of tutorials, talks, short research announcements, and a special "open problems'' session
    • …
    corecore