356 research outputs found

    Asymptotically Optimal Algorithms for Pickup and Delivery Problems with Application to Large-Scale Transportation Systems

    Full text link
    The Stacker Crane Problem is NP-Hard and the best known approximation algorithm only provides a 9/5 approximation ratio. The objective of this paper is threefold. First, by embedding the problem within a stochastic framework, we present a novel algorithm for the SCP that: (i) is asymptotically optimal, i.e., it produces, almost surely, a solution approaching the optimal one as the number of pickups/deliveries goes to infinity; and (ii) has computational complexity O(n^{2+\eps}), where nn is the number of pickup/delivery pairs and \eps is an arbitrarily small positive constant. Second, we asymptotically characterize the length of the optimal SCP tour. Finally, we study a dynamic version of the SCP, whereby pickup and delivery requests arrive according to a Poisson process, and which serves as a model for large-scale demand-responsive transport (DRT) systems. For such a dynamic counterpart of the SCP, we derive a necessary and sufficient condition for the existence of stable vehicle routing policies, which depends only on the workspace geometry, the stochastic distributions of pickup and delivery points, the arrival rate of requests, and the number of vehicles. Our results leverage a novel connection between the Euclidean Bipartite Matching Problem and the theory of random permutations, and, for the dynamic setting, exhibit novel features that are absent in traditional spatially-distributed queueing systems.Comment: 27 pages, plus Appendix, 7 figures, extended version of paper being submitted to IEEE Transactions of Automatic Contro

    An asymptotically optimal algorithm for pickup and delivery problems

    Get PDF
    Pickup and delivery problems (PDPs), in which objects or people have to be transported between specific locations, are among the most common combinatorial problems in real-world operations. One particular PDP is the Stacker Crane problem (SCP), where each commodity/customer is associated with a pickup location and a delivery location, and the objective is to find a minimum-length tour visiting all locations with the constraint that each pickup location and its associated delivery location are visited in consecutive order. The SCP is a route optimization problem behind several transportation systems, e.g., Transportation-On-Demand (TOD) systems. The SCP is NP-Hard and the best know approximation algorithm only provides a 9/5 approximation ratio. We present an algorithm for the stochastic SCP which: (i) is asymptotically optimal, i.e., it produces a solution approaching the optimal one as the number of pickups/deliveries goes to infinity; and (ii) has computational complexity O(n[superscript 2+ฯต]), where n is the number of pickup/delivery pairs and ฯต is an arbitrarily small positive constant. Our results leverage a novel connection between the Euclidean Bipartite Matching Problem and the theory of random permutations.Singapore-MIT Alliance for Research and Technology Cente

    ์‹ค์‹œ๊ฐ„ ๋™์  ๊ณ„ํš๋ฒ• ๋ฐ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๊ณต๊ณต์ž์ „๊ฑฐ ์‹œ์Šคํ…œ์˜ ๋™์  ์žฌ๋ฐฐ์น˜ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2020. 8. ๊ณ ์Šน์˜.The public bicycle sharing system is one of the modes of transportation that can help to relieve several urban problems, such as traffic congestion and air pollution. Because users can pick up and return bicycles anytime and anywhere a station is located, pickup or return failure can occur due to the spatiotemporal imbalances in demand. To prevent system failures, the operator should establish an appropriate repositioning strategy. As the operator makes a decision based on the predicted demand information, the accuracy of forecasting demand is an essential factor. Due to the stochastic nature of demand, however, the occurrence of prediction errors is inevitable. This study develops a stochastic dynamic model that minimizes unmet demand for rebalancing public bicycle sharing systems, taking into account the stochastic demand and the dynamic characteristics of the system. Since the repositioning mechanism corresponds to the sequential decision-making problem, this study applies the Markov decision process to the problem. To solve the Markov decision process, a dynamic programming method, which decomposes complex problems into simple subproblems to derive an exact solution. However, as a set of states and actions of the Markov decision process become more extensive, the computational complexity increases and it is intractable to derive solutions. An approximate dynamic programming method is introduced to derive an approximate solution. Further, a reinforcement learning model is applied to obtain a feasible solution in a large-scale public bicycle network. It is assumed that the predicted demand is derived from the random forest, which is a kind of machine learning technique, and that the observed demand occurred along the Poisson distribution whose mean is the predicted demand to simulate the uncertainty of the future demand. Total unmet demand is used as a key performance indicator in this study. In this study, a repositioning strategy that quickly responds to the prediction error, which means the difference between the observed demand and the predicted demand, is developed and the effectiveness is assessed. Strategies developed in previous studies or applied in the field are also modeled and compared with the results to verify the effectiveness of the strategy. Besides, the effects of various safety buffers and safety stock are examined and appropriate strategies are suggested for each situation. As a result of the analysis, the repositioning effect by the developed strategy was improved compared to the benchmark strategies. In particular, the effect of a strategy focusing on stations with high prediction errors is similar to the effect of a strategy considering all stations, but the computation time can be further reduced. Through this study, the utilization and reliability of the public bicycle system can be improved through the efficient operation without expanding the infrastructure.๊ณต๊ณต์ž์ „๊ฑฐ ์‹œ์Šคํ…œ์€ ๊ตํ†ตํ˜ผ์žก๊ณผ ๋Œ€๊ธฐ์˜ค์—ผ ๋“ฑ ์—ฌ๋Ÿฌ ๋„์‹œ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตํ†ต์ˆ˜๋‹จ์ด๋‹ค. ๋Œ€์—ฌ์†Œ๊ฐ€ ์œ„์น˜ํ•œ ๊ณณ์ด๋ฉด ์–ธ์ œ ์–ด๋””์„œ๋“  ์ด์šฉ์ž๊ฐ€ ์ž์ „๊ฑฐ๋ฅผ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์˜ ํŠน์„ฑ์ƒ ์ˆ˜์š”์˜ ์‹œ๊ณต๊ฐ„์  ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•ด ๋Œ€์—ฌ ์‹คํŒจ ๋˜๋Š” ๋ฐ˜๋‚ฉ ์‹คํŒจ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์‹œ์Šคํ…œ ์‹คํŒจ๋ฅผ ์˜ˆ๋ฐฉํ•˜๊ธฐ ์œ„ํ•ด ์šด์˜์ž๋Š” ์ ์ ˆํ•œ ์žฌ๋ฐฐ์น˜ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•ด์•ผ ํ•œ๋‹ค. ์šด์˜์ž๋Š” ์˜ˆ์ธก ์ˆ˜์š” ์ •๋ณด๋ฅผ ์ „์ œ๋กœ ์˜์‚ฌ๊ฒฐ์ •์„ ํ•˜๋ฏ€๋กœ ์ˆ˜์š”์˜ˆ์ธก์˜ ์ •ํ™•์„ฑ์ด ์ค‘์š”ํ•œ ์š”์†Œ์ด๋‚˜, ์ˆ˜์š”์˜ ๋ถˆํ™•์‹ค์„ฑ์œผ๋กœ ์ธํ•ด ์˜ˆ์ธก ์˜ค์ฐจ์˜ ๋ฐœ์ƒ์ด ๋ถˆ๊ฐ€ํ”ผํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ณต๊ณต์ž์ „๊ฑฐ ์ˆ˜์š”์˜ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์‹œ์Šคํ…œ์˜ ๋™์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ถˆ๋งŒ์กฑ ์ˆ˜์š”๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์žฌ๋ฐฐ์น˜ ๋ชจํ˜•์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ณต๊ณต์ž์ „๊ฑฐ ์žฌ๋ฐฐ์น˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ˆœ์ฐจ์  ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ์— ํ•ด๋‹นํ•˜๋ฏ€๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆœ์ฐจ์  ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ๋ฅผ ๋ชจํ˜•ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •์„ ์ ์šฉํ•œ๋‹ค. ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •์„ ํ’€๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ๊ฐ„๋‹จํ•œ ๋ถ€๋ฌธ์ œ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ์ •ํ™•ํ•ด๋ฅผ ๋„์ถœํ•˜๋Š” ๋™์  ๊ณ„ํš๋ฒ•์„ ์ด์šฉํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •์˜ ์ƒํƒœ ์ง‘ํ•ฉ๊ณผ ๊ฒฐ์ • ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋ฉด ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฏ€๋กœ, ๋™์  ๊ณ„ํš๋ฒ•์„ ์ด์šฉํ•œ ์ •ํ™•ํ•ด๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์—†๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ทผ์‚ฌ์  ๋™์  ๊ณ„ํš๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ๊ทผ์‚ฌํ•ด๋ฅผ ๋„์ถœํ•˜๋ฉฐ, ๋Œ€๊ทœ๋ชจ ๊ณต๊ณต์ž์ „๊ฑฐ ๋„คํŠธ์›Œํฌ์—์„œ ๊ฐ€๋Šฅํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™”ํ•™์Šต ๋ชจํ˜•์„ ์ ์šฉํ•œ๋‹ค. ์žฅ๋ž˜ ๊ณต๊ณต์ž์ „๊ฑฐ ์ด์šฉ์ˆ˜์š”์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด, ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•์˜ ์ผ์ข…์ธ random forest๋กœ ์˜ˆ์ธก ์ˆ˜์š”๋ฅผ ๋„์ถœํ•˜๊ณ , ์˜ˆ์ธก ์ˆ˜์š”๋ฅผ ํ‰๊ท ์œผ๋กœ ํ•˜๋Š” ํฌ์•„์†ก ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ผ ์ˆ˜์š”๋ฅผ ํ™•๋ฅ ์ ์œผ๋กœ ๋ฐœ์ƒ์‹œ์ผฐ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ด€์ธก ์ˆ˜์š”์™€ ์˜ˆ์ธก ์ˆ˜์š” ๊ฐ„์˜ ์ฐจ์ด์ธ ์˜ˆ์ธก์˜ค์ฐจ์— ๋น ๋ฅด๊ฒŒ ๋Œ€์‘ํ•˜๋Š” ์žฌ๋ฐฐ์น˜ ์ „๋žต์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ฐœ๋ฐœ๋œ ์ „๋žต์˜ ์šฐ์ˆ˜์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ์žฌ๋ฐฐ์น˜ ์ „๋žต ๋ฐ ํ˜„์‹ค์—์„œ ์ ์šฉ๋˜๋Š” ์ „๋žต์„ ๋ชจํ˜•ํ™”ํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•œ๋‹ค. ๋˜ํ•œ, ์žฌ๊ณ ๋Ÿ‰์˜ ์•ˆ์ „ ๊ตฌ๊ฐ„ ๋ฐ ์•ˆ์ „์žฌ๊ณ ๋Ÿ‰์— ๊ด€ํ•œ ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ํ•จ์˜์ ์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐœ๋ฐœ๋œ ์ „๋žต์˜ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ์ „๋žต ๋ฐ ํ˜„์‹ค์—์„œ ์ ์šฉ๋˜๋Š” ์ „๋žต๋ณด๋‹ค ๊ฐœ์„ ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ํŠนํžˆ ์˜ˆ์ธก์˜ค์ฐจ๊ฐ€ ํฐ ๋Œ€์—ฌ์†Œ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ์ „๋žต์ด ์ „์ฒด ๋Œ€์—ฌ์†Œ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ์ „๋žต๊ณผ ์žฌ๋ฐฐ์น˜ ํšจ๊ณผ๊ฐ€ ์œ ์‚ฌํ•˜๋ฉด์„œ๋„ ๊ณ„์‚ฐ์‹œ๊ฐ„์„ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ณต๊ณต์ž์ „๊ฑฐ ์ธํ”„๋ผ๋ฅผ ํ™•๋Œ€ํ•˜์ง€ ์•Š๊ณ ๋„ ์šด์˜์˜ ํšจ์œจํ™”๋ฅผ ํ†ตํ•ด ๊ณต๊ณต์ž์ „๊ฑฐ ์‹œ์Šคํ…œ์˜ ์ด์šฉ๋ฅ  ๋ฐ ์‹ ๋ขฐ์„ฑ์„ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ณต๊ณต์ž์ „๊ฑฐ ์žฌ๋ฐฐ์น˜์— ๊ด€ํ•œ ์ •์ฑ…์  ํ•จ์˜์ ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ์žˆ๋‹ค.Chapter 1. Introduction ๏ผ‘ 1.1 Research Background and Purposes ๏ผ‘ 1.2 Research Scope and Procedure ๏ผ— Chapter 2. Literature Review ๏ผ‘๏ผ 2.1 Vehicle Routing Problems ๏ผ‘๏ผ 2.2 Bicycle Repositioning Problem ๏ผ‘๏ผ’ 2.3 Markov Decision Processes ๏ผ’๏ผ“ 2.4 Implications and Contributions ๏ผ’๏ผ– Chapter 3. Model Formulation ๏ผ’๏ผ˜ 3.1 Problem Definition ๏ผ’๏ผ˜ 3.2 Markov Decision Processes ๏ผ“๏ผ” 3.3 Demand Forecasting ๏ผ”๏ผ 3.4 Key Performance Indicator (KPI) ๏ผ”๏ผ• Chapter 4. Solution Algorithms ๏ผ”๏ผ— 4.1 Exact Solution Algorithm ๏ผ”๏ผ— 4.2 Approximate Dynamic Programming ๏ผ•๏ผ 4.3 Reinforcement Learning Method ๏ผ•๏ผ’ Chapter 5. Numerical Example ๏ผ•๏ผ• 5.1 Data Overview ๏ผ•๏ผ• 5.2 Experimental Design ๏ผ–๏ผ‘ 5.3 Algorithm Performance ๏ผ–๏ผ– 5.4 Sensitivity Analysis ๏ผ—๏ผ” 5.5 Large-scale Cases ๏ผ—๏ผ– Chapter 6. Conclusions ๏ผ˜๏ผ’ 6.1 Conclusions ๏ผ˜๏ผ’ 6.2 Future Research ๏ผ˜๏ผ“ References ๏ผ˜๏ผ– ์ดˆ ๋ก ๏ผ™๏ผ’Docto

    Models and Algorihtm for the Optimization of Real-World Routing and Logistics Problems

    Get PDF
    Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP

    New variants of the time-dependent vehicle routing problem with time windows

    Get PDF

    New variants of the time-dependent vehicle routing problem with time windows

    Get PDF

    El problema del viajante de comercio con recogida y entrega de una mercancรญa con demanda dividida.

    Get PDF
    This thesis focuses on a kind of problems thoroughly studied in operational research, in particular in Vehicle Routing Problems. Despite there are a lot of studies about them, the most basic are still difficult to solve optimally, even for small size and the lacking practical use. Because of that, this thesis develops exact and heuristic algorithms to solve a particular problem known as The split-demand one-commodity pickup-and-delivery travelling salesman problem (SD1PDTSP). This combines three vehicle routing problems. The first one is the Capacitated Vehicle Routing Problem (CVRP), aiming at designing the routes for a vehicle fleet to deliver a commodity from the depot to a set of customers. Each route starts and ends at the depot, and the load of a vehicle through a route should never exceed the vehicle capacity. A fundamental assumption is that each customer cannot be visited more than once. The aim of the CVRP is to satisfy the demand of each customer while minimizing the total distance travelled by the fleet. The second problem is the Split Delivery Vehicle Routing Problem (SDVRP), which allows a customer to be visited more than once. The third problem still moves one commodity while it allows more than one pickup location. It is the One Commodity Pickup-and-Delivery Travelling Salesman Problem (1-PDTSP). Using the elements of these three problems, the SD1PDTSP is defined as follows. Let us consider a finite set of locations. The travel distances (or costs) between the locations are assumed to be known. Each location is related to a customer, with a known positive or negative demand of a commodity (e.g. bicycles). We assume that the sum of all demands is equal to zero. Customers with negative demands correspond to pickup locations, and customers with positive demands correspond to delivery locations. It is assumed that there is one vehicle with a given capacity that must visit each location at least once through a route to move the commodity and satisfy all the customer demands. Each visit may partially satisfy a customer, and all the visits to that customer must end up with exactly its full demand. The SD1PDTSP consists of finding a minimum-cost route for the vehicle such that it satisfies the demand of all customers. Note that such a route may not exist, and in general checking whether a feasible solution exists is a NP-complete problem due to the limitation in the number of visits to each location and the vehicle capacity. The importance of these kind of problems is not due to the computational complexity only, but also the variety of practical applications. In fact, the idea of Operational Research appears formally in 1938 in the SecondWorldWar, in the frame in collaborative researches between soldiers and scientists about planning of fight military operations. A part of the most obvious examples in logistic (distribution of commodities, scholar routes,etc.), there are more examples as operational control of traffic light, those that can be found in robotic systems that allow to solve production problems, in genetic, etc. Other kind of practical applications arise due to the growing worry about environment. This thesis studies the case of the management of bicycle sharing systems. These are increasingly in demand due to the need of space, the high traffic density and the high emission of noise and CO2

    Solution techniques for a crane sequencing problem

    Get PDF
    In shipyards and power plants, relocating resources (items) from existing positions to newly assigned locations are costly and may represent a significant portion of the overall project budget. Since the crane is the most popular material handling equipment for relocating bulky items, it is essential to develop a good crane route to ensure efficient utilization and lower cost. In this research, minimizing the total travel and loading/unloading costs for the crane to relocate resources in multiple time periods is defined as the crane sequencing problem (CSP). In other words, the objective of the CSP is to find routes such that the cost of crane travel and resource loading/unloading is minimized. However, the CSP considers the capacities of locations and intermediate drops (i.e., preemptions) during a multiple period planning horizon. Therefore, the CSP is a unique problem with many applications and is computationally intractable. A mathematical model is developed to obtain optimal solutions for small size problems. Since large size CSPs are computationally intractable, construction algorithms as well as improvement heuristics (e.g., simulated annealing, hybrid ant systems and tabu search heuristics) are proposed to solve the CSPs. Two sets of test problems with different problem sizes are generated to test the proposed heuristics. In other words, extensive computational experiments are conducted to evaluate the performances of the proposed heuristics
    • โ€ฆ
    corecore