12,463 research outputs found

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Order reduction methods for solving large-scale differential matrix Riccati equations

    Full text link
    We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies, by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers

    Multiscale differential Riccati equations for linear quadratic regulator problems

    Get PDF
    We consider approximations to the solutions of differential Riccati equations in the context of linear quadratic regulator problems, where the state equation is governed by a multiscale operator. Similarly to elliptic and parabolic problems, standard finite element discretizations perform poorly in this setting unless the grid resolves the fine-scale features of the problem. This results in unfeasible amounts of computation and high memory requirements. In this paper, we demonstrate how the localized orthogonal decomposition method may be used to acquire accurate results also for coarse discretizations, at the low cost of solving a series of small, localized elliptic problems. We prove second-order convergence (except for a logarithmic factor) in the L2L^2 operator norm, and first-order convergence in the corresponding energy norm. These results are both independent of the multiscale variations in the state equation. In addition, we provide a detailed derivation of the fully discrete matrix-valued equations, and show how they can be handled in a low-rank setting for large-scale computations. In connection to this, we also show how to efficiently compute the relevant operator-norm errors. Finally, our theoretical results are validated by several numerical experiments.Comment: Accepted for publication in SIAM J. Sci. Comput. This version differs from the previous one only by the addition of Remark 7.2 and minor changes in formatting. 21 pages, 12 figure

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed

    Directly Coupled Observers for Quantum Harmonic Oscillators with Discounted Mean Square Cost Functionals and Penalized Back-action

    Full text link
    This paper is concerned with quantum harmonic oscillators consisting of a quantum plant and a directly coupled coherent quantum observer. We employ discounted quadratic performance criteria in the form of exponentially weighted time averages of second-order moments of the system variables. A coherent quantum filtering (CQF) problem is formulated as the minimization of the discounted mean square of an estimation error, with which the dynamic variables of the observer approximate those of the plant. The cost functional also involves a quadratic penalty on the plant-observer coupling matrix in order to mitigate the back-action of the observer on the covariance dynamics of the plant. For the discounted mean square optimal CQF problem with penalized back-action, we establish first-order necessary conditions of optimality in the form of algebraic matrix equations. By using the Hamiltonian structure of the Heisenberg dynamics and related Lie-algebraic techniques, we represent this set of equations in a more explicit form in the case of equally dimensioned plant and observer.Comment: 11 pages, a brief version to be submitted to the IEEE 2016 Conference on Norbert Wiener in the 21st Century, 13-15 July, Melbourne, Australi

    All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems

    Get PDF
    Time-dependent partial differential equations (PDEs) play an important role in applied mathematics and many other areas of science. One-shot methods try to compute the solution to these problems in a single iteration that solves for all time-steps at the same time. In this paper, we look at one-shot approaches for the optimal control of time-dependent PDEs and focus on the fast solution of these problems. The use of Krylov subspace solvers together with an efficient preconditioner allows for minimal storage requirements. We solve only approximate time-evolutions for both forward and adjoint problem and compute accurate solutions of a given control problem only at convergence of the overall Krylov subspace iteration. We show that our approach can give competitive results for a variety of problem formulations
    • …
    corecore