2,206 research outputs found

    Generation of monodisperse droplets by spontaneous condensation of flow in nozzles

    Get PDF
    Submicron size monodisperse particles are of interest in many industrial and scientific applications. These include the manufacture of ceramic parts using fine ceramic particles, the production of thin films by deposition of ionized clusters, monodisperse seed particles for laser anemometry, and the study of size dependence of cluster chemical and physical properties. An inexpensive and relatively easy way to generate such particles is by utilizing the phenomenon of spontaneous condensation. The phenomenon occurs when the vapor or a mixture of a vapor and a noncondensing gas is expanded at a high expansion rate. The saturation line is crossed with the supercooled vapor behaving like a gas, until all of a sudden at the so called Wilson point, condensation occurs, resulting in a large number of relatively monodisperse droplets. The droplet size is a function of the expansion rate, inlet conditions, mass fraction of vapor, gas properties, etc. Spontaneous condensation of steam and water vapor and air mixture in a one dimensional nozzle was modeled and the resulting equations solved numerically. The droplet size distribution at the exit of various one dimensional nozzles and the flow characteristics such as pressure ratio, mean droplet radius, vapor and droplet temperatures, nucleation flux, supercooling, wetness, etc., along the axial distance were obtained. The numerical results compared very well with the available experimental data. The effect of inlet conditions, nozzle expansion rates, and vapor mass fractions on droplet mean radius, droplet size distribution, and pressure ratio were examined

    On the application of isogeometric finite volume method in numerical analysis of wet-steam flow through turbine cascades

    Get PDF
    The isogeometric finite volume analysis is utilized in this research to numerically simulate the two-dimensional viscous wet-steam flow between stationary cascades of a steam turbine for the first time. In this approach, the analysis-suitable computational mesh with ‘‘curved’’ boundaries is generated for the fluid flow by employing a non- uniform rational B-spline (NURBS) surface that describes the cascade geometry, and the governing equations are then discretized by the NURBS representation. Thanks to smooth and accurate geometry representation of the NURBS formulation, the employed isogeometric framework not only resolves issues concerning the conventional mesh generation techniques of the finite volume method in steam turbine problems, but also, as validated against well-established experiments, significantly improves the accuracy of the numerical solution. In addition, the shock location in the cascade is predicted and tracked with a sufficient accuracy

    An efficient approach to separate CO2 using supersonic flows for carbon capture and storage

    Get PDF
    The mitigation of CO2 emissions is an effective measure to solve the climate change issue. In the present study, we propose an alternative approach for CO2 capture by employing supersonic flows. For this purpose, we first develop a computational fluid dynamics (CFD) model to predict the CO2 condensing flow in a supersonic nozzle. Adding two transport equations to describe the liquid fraction and droplet number, the detailed numerical model can describe the heat and mass transfer characteristics during the CO2 phase change process under the supersonic expansion conditions. A comparative study is performed to evaluate the effect of CO2 condensation using the condensation model and dry gas assumption. The results show that the developed CFD model predicts accurately the distribution of the static temperature contrary to the dry gas assumption. Furthermore, the condensing flow model predicts a CO2 liquid fraction up to 18.6% of the total mass, which leads to the release of the latent heat to the vapour phase. The investigation performed in this study suggests that the CO2 condensation in supersonic flows provides an efficient and eco-friendly way to mitigate the CO2 emissions to the environment

    A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades

    Get PDF
    This paper proposes to use a blackbox optimization to obtain the optimal volumetric heating required to reduce the wetness at the last stages of steam turbines. For this purpose, a global multiobjective optimization is utilized through the automatic linking of genetic algorithm and CFD code, where the blackbox function evaluations are performed by CFD runs. The logarithm of number of droplets per volume (LND), the droplet average radius (DAR), and the integral of local entropy (ILE) at the end of the cascade (after the condensation location) are minimized, while the volumetric heating rate is the optimization parameter. The Eulerian–Eulerian approach is implemented to model the two-phase wet steam turbulent flow and the numerical results are validated against well-established experiments. Since higher volumetric heating rates reduce DAR and LND, while increase ILE, according to optimization results, there is an optimum for the volumetric heating rate to reach the best performance of steam turbines. For case studies presented in this work, the optimal volumetric heating rates of 5.21x10^8 and 4.67x10^8 W/m^2 are obtained for two different cases of supersonic and subsonic outlets, respectively. Particularly, these rates improve DAR by 45.7% and 57.5%, and LND by 6.0% and 7.8% for respective cases

    Numerical Investigation of Wet Inflow in Steam Turbine Cascades Using NURBS-based Mesh Generation Method

    Get PDF
    In this paper, the impact of existence of wetness in the inflow of stationary cascades of steam turbine blades has been numerically investigated. A new mesh generation method based on non-uniform rational B-splines (NURBS) has been adopted to reduce the numerical error of the wet inflow simulation. Moreover, two common meshing scenarios namely blade-to-blade (B-B) and periodic-to-periodic boundary (P-P) are studied and different angle of the grid at the trailing edge have been considered. The classical nucleation theory corrected by Courtney–Kantrowitz model and the Young's droplet growth model are employed to simulate the condensation phenomenon. By validating against experimental data, the results showed that implementing the proposed NURBS-based meshing technique decreased the prediction errors of static pressure distribution and droplet average radius by 35.64% and 78.44%, respectively, in comparison to typical grid generation methods. In addition, it was observed that existence of wetness at inlet significantly decreased the supercooling degree and postponed the nucleation process. Thus, the nucleation rate could be ameliorated in the case when we have a specific amount of wetness fraction in the inflow
    • …
    corecore