210 research outputs found

    Cartesian product of hypergraphs: properties and algorithms

    Full text link
    Cartesian products of graphs have been studied extensively since the 1960s. They make it possible to decrease the algorithmic complexity of problems by using the factorization of the product. Hypergraphs were introduced as a generalization of graphs and the definition of Cartesian products extends naturally to them. In this paper, we give new properties and algorithms concerning coloring aspects of Cartesian products of hypergraphs. We also extend a classical prime factorization algorithm initially designed for graphs to connected conformal hypergraphs using 2-sections of hypergraphs

    The Cartesian product of graphs with loops

    Full text link
    We extend the definition of the Cartesian product to graphs with loops and show that the Sabidussi-Vizing unique factorization theorem for connected finite simple graphs still holds in this context for all connected finite graphs with at least one unlooped vertex. We also prove that this factorization can be computed in O(m) time, where m is the number of edges of the given graph.Comment: 8 pages, 1 figur

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio
    corecore