1,110 research outputs found

    The number of unit-area triangles in the plane: Theme and variations

    Get PDF
    We show that the number of unit-area triangles determined by a set SS of nn points in the plane is O(n20/9)O(n^{20/9}), improving the earlier bound O(n9/4)O(n^{9/4}) of Apfelbaum and Sharir [Discrete Comput. Geom., 2010]. We also consider two special cases of this problem: (i) We show, using a somewhat subtle construction, that if SS consists of points on three lines, the number of unit-area triangles that SS spans can be Ω(n2)\Omega(n^2), for any triple of lines (it is always O(n2)O(n^2) in this case). (ii) We show that if SS is a {\em convex grid} of the form A×BA\times B, where AA, BB are {\em convex} sets of n1/2n^{1/2} real numbers each (i.e., the sequences of differences of consecutive elements of AA and of BB are both strictly increasing), then SS determines O(n31/14)O(n^{31/14}) unit-area triangles

    Improved estimates on the number of unit perimeter triangles

    Full text link
    We obtain new upper and lower bounds on the number of unit perimeter triangles spanned by points in the plane. We also establish improved bounds in the special case where the point set is a section of the integer grid.Comment: 8 pages, 1 figur

    Kinetic and Dynamic Delaunay tetrahedralizations in three dimensions

    Get PDF
    We describe the implementation of algorithms to construct and maintain three-dimensional dynamic Delaunay triangulations with kinetic vertices using a three-simplex data structure. The code is capable of constructing the geometric dual, the Voronoi or Dirichlet tessellation. Initially, a given list of points is triangulated. Time evolution of the triangulation is not only governed by kinetic vertices but also by a changing number of vertices. We use three-dimensional simplex flip algorithms, a stochastic visibility walk algorithm for point location and in addition, we propose a new simple method of deleting vertices from an existing three-dimensional Delaunay triangulation while maintaining the Delaunay property. The dual Dirichlet tessellation can be used to solve differential equations on an irregular grid, to define partitions in cell tissue simulations, for collision detection etc.Comment: 29 pg (preprint), 12 figures, 1 table Title changed (mainly nomenclature), referee suggestions included, typos corrected, bibliography update

    On distinct distances in homogeneous sets in the Euclidean space

    Full text link
    A homogeneous set of nn points in the dd-dimensional Euclidean space determines at least Ω(n2d/(d2+1)/logc(d)n)\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n) distinct distances for a constant c(d)>0c(d)>0. In three-space, we slightly improve our general bound and show that a homogeneous set of nn points determines at least Ω(n.6091)\Omega(n^{.6091}) distinct distances

    The Number of Unit-Area Triangles in the Plane: Theme and Variations *

    Get PDF
    Abstract We show that the number of unit-area triangles determined by a set S of n points in the plane is O(n 20/9 ), improving the earlier bound O(n 9/4 ) of Apfelbaum and Sharir (ii) We show that if S is a convex grid of the form A × B, where A, B are convex sets of n 1/2 real numbers each (i.e., the sequences of differences of consecutive elements of A and of B are both strictly increasing), then S determines O(n 31/14 ) unit-area triangles

    Convex Polygons in Cartesian Products

    Get PDF
    We study several problems concerning convex polygons whose vertices lie in a Cartesian product of two sets of n real numbers (for short, grid). First, we prove that every such grid contains a convex polygon with Omega(log n) vertices and that this bound is tight up to a constant factor. We generalize this result to d dimensions (for a fixed d in N), and obtain a tight lower bound of Omega(log^{d-1}n) for the maximum number of points in convex position in a d-dimensional grid. Second, we present polynomial-time algorithms for computing the longest convex polygonal chain in a grid that contains no two points with the same x- or y-coordinate. We show that the maximum size of such a convex polygon can be efficiently approximated up to a factor of 2. Finally, we present exponential bounds on the maximum number of convex polygons in these grids, and for some restricted variants. These bounds are tight up to polynomial factors
    corecore