235 research outputs found

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Uniform hypergraphs containing no grids

    Get PDF
    A hypergraph is called an r×r grid if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e.,a family of sets {A1, ..., Ar, B1, ..., Br} such that Ai∩Aj=Bi∩Bj=φ for 1≤i<j≤r and {pipe}Ai∩Bj{pipe}=1 for 1≤i, j≤r. Three sets C1, C2, C3 form a triangle if they pairwise intersect in three distinct singletons, {pipe}C1∩C2{pipe}={pipe}C2∩C3{pipe}={pipe}C3∩C1{pipe}=1, C1∩C2≠C1∩C3. A hypergraph is linear, if {pipe}E∩F{pipe}≤1 holds for every pair of edges E≠F.In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For r≥. 4 our constructions are almost optimal. These investigations are motivated by coding theory: we get new bounds for optimal superimposed codes and designs. © 2013 Elsevier Ltd

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes

    Low-Density Parity-Check Codes From Transversal Designs With Improved Stopping Set Distributions

    Full text link
    This paper examines the construction of low-density parity-check (LDPC) codes from transversal designs based on sets of mutually orthogonal Latin squares (MOLS). By transferring the concept of configurations in combinatorial designs to the level of Latin squares, we thoroughly investigate the occurrence and avoidance of stopping sets for the arising codes. Stopping sets are known to determine the decoding performance over the binary erasure channel and should be avoided for small sizes. Based on large sets of simple-structured MOLS, we derive powerful constraints for the choice of suitable subsets, leading to improved stopping set distributions for the corresponding codes. We focus on LDPC codes with column weight 4, but the results are also applicable for the construction of codes with higher column weights. Finally, we show that a subclass of the presented codes has quasi-cyclic structure which allows low-complexity encoding.Comment: 11 pages; to appear in "IEEE Transactions on Communications

    A characterization of entanglement-assisted quantum low-density parity-check codes

    Get PDF
    As in classical coding theory, quantum analogues of low-density parity-check (LDPC) codes have offered good error correction performance and low decoding complexity by employing the Calderbank-Shor-Steane (CSS) construction. However, special requirements in the quantum setting severely limit the structures such quantum codes can have. While the entanglement-assisted stabilizer formalism overcomes this limitation by exploiting maximally entangled states (ebits), excessive reliance on ebits is a substantial obstacle to implementation. This paper gives necessary and sufficient conditions for the existence of quantum LDPC codes which are obtainable from pairs of identical LDPC codes and consume only one ebit, and studies the spectrum of attainable code parameters.Comment: 7 pages, no figures, final accepted version for publication in the IEEE Transactions on Information Theor

    A new structure for difference matrices over abelian pp-groups

    Full text link
    A difference matrix over a group is a discrete structure that is intimately related to many other combinatorial designs, including mutually orthogonal Latin squares, orthogonal arrays, and transversal designs. Interest in constructing difference matrices over 22-groups has been renewed by the recent discovery that these matrices can be used to construct large linking systems of difference sets, which in turn provide examples of systems of linked symmetric designs and association schemes. We survey the main constructive and nonexistence results for difference matrices, beginning with a classical construction based on the properties of a finite field. We then introduce the concept of a contracted difference matrix, which generates a much larger difference matrix. We show that several of the main constructive results for difference matrices over abelian pp-groups can be substantially simplified and extended using contracted difference matrices. In particular, we obtain new linking systems of difference sets of size 77 in infinite families of abelian 22-groups, whereas previously the largest known size was 33.Comment: 27 pages. Discussion of new reference [LT04
    • …
    corecore