7,986 research outputs found

    Semi-Transitive Orientations and Word-Representable Graphs

    Get PDF
    A graph G=(V,E)G=(V,E) is a \emph{word-representable graph} if there exists a word WW over the alphabet VV such that letters xx and yy alternate in WW if and only if (x,y)∈E(x,y)\in E for each x≠yx\neq y. In this paper we give an effective characterization of word-representable graphs in terms of orientations. Namely, we show that a graph is word-representable if and only if it admits a \emph{semi-transitive orientation} defined in the paper. This allows us to prove a number of results about word-representable graphs, in particular showing that the recognition problem is in NP, and that word-representable graphs include all 3-colorable graphs. We also explore bounds on the size of the word representing the graph. The representation number of GG is the minimum kk such that GG is a representable by a word, where each letter occurs kk times; such a kk exists for any word-representable graph. We show that the representation number of a word-representable graph on nn vertices is at most 2n2n, while there exist graphs for which it is n/2n/2.Comment: arXiv admin note: text overlap with arXiv:0810.031

    On word-representability of polyomino triangulations

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. Some graphs are word-representable, others are not. It is known that a graph is word-representable if and only if it accepts a so-called semi-transitive orientation. The main result of this paper is showing that a triangulation of any convex polyomino is word-representable if and only if it is 3-colorable. We demonstrate that this statement is not true for an arbitrary polyomino. We also show that the graph obtained by replacing each 44-cycle in a polyomino by the complete graph K4K_4 is word-representable. We employ semi-transitive orientations to obtain our results
    • …
    corecore