971 research outputs found

    Defective Coloring on Classes of Perfect Graphs

    Full text link
    In Defective Coloring we are given a graph GG and two integers χd\chi_d, Δ∗\Delta^* and are asked if we can χd\chi_d-color GG so that the maximum degree induced by any color class is at most Δ∗\Delta^*. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd\chi_d, Δ∗\Delta^* is set to the smallest possible fixed value that does not trivialize the problem (χd=2\chi_d = 2 or Δ∗=1\Delta^* = 1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd\chi_d or Δ∗\Delta^* is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd\chi_d and Δ∗\Delta^* are unbounded

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either ⌊n/k⌋\left\lfloor n/k \right\rfloor or ⌈n/k⌉\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Grid Representations and the Chromatic Number

    Get PDF
    A grid drawing of a graph maps vertices to grid points and edges to line segments that avoid grid points representing other vertices. We show that there is a number of grid points that some line segment of an arbitrary grid drawing must intersect. This number is closely connected to the chromatic number. Second, we study how many columns we need to draw a graph in the grid, introducing some new \NP-complete problems. Finally, we show that any planar graph has a planar grid drawing where every line segment contains exactly two grid points. This result proves conjectures asked by David Flores-Pe\~naloza and Francisco Javier Zaragoza Martinez.Comment: 22 pages, 8 figure

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Wide partitions, Latin tableaux, and Rota's basis conjecture

    Get PDF
    Say that mu is a ``subpartition'' of an integer partition lambda if the multiset of parts of mu is a submultiset of the parts of lambda, and define an integer partition lambda to be ``wide'' if for every subpartition mu of lambda, mu >= mu' in dominance order (where mu' denotes the conjugate or transpose of mu). Then Brian Taylor and the first author have conjectured that an integer partition lambda is wide if and only if there exists a tableau of shape lambda such that (1) for all i, the entries in the ith row of the tableau are precisely the integers from 1 to lambda_i inclusive, and (2) for all j, the entries in the jth column of the tableau are pairwise distinct. This conjecture was originally motivated by Rota's basis conjecture and, if true, yields a new class of integer multiflow problems that satisfy max-flow min-cut and integrality. Wide partitions also yield a class of graphs that satisfy ``delta-conjugacy'' (in the sense of Greene and Kleitman), and the above conjecture implies that these graphs furthermore have a completely saturated stable set partition. We present several partial results, but the conjecture remains very much open.Comment: Joined forces with Goemans and Vondrak---several new partial results; 28 pages, submitted to Adv. Appl. Mat
    • …
    corecore