1,204 research outputs found

    On the number of lattice points in a small sphere and a recursive lattice decoding algorithm

    Get PDF
    Let L be a lattice in Rn{\mathbb{R}^n} . This paper provides two methods to obtain upper bounds on the number of points of L contained in a small sphere centered anywhere in Rn{\mathbb{R}^n} . The first method is based on the observation that if the sphere is sufficiently small then the lattice points contained in the sphere give rise to a spherical code with a certain minimum angle. The second method involves Gaussian measures on L in the sense of Banaszczyk (Math Ann 296:625-635, 1993). Examples where the obtained bounds are optimal include some root lattices in small dimensions and the Leech lattice. We also present a natural decoding algorithm for lattices constructed from lattices of smaller dimension, and apply our results on the number of lattice points in a small sphere to conclude on the performance of this algorith

    On the number of lattice points in a small sphere and a recursive lattice decoding algorithm

    Get PDF
    Let L be a lattice in . This paper provides two methods to obtain upper bounds on the number of points of L contained in a small sphere centered anywhere in . The first method is based on the observation that if the sphere is sufficiently small then the lattice points contained in the sphere give rise to a spherical code with a certain minimum angle. The second method involves Gaussian measures on L in the sense of Banaszczyk (Math Ann 296:625-635, 1993). Examples where the obtained bounds are optimal include some root lattices in small dimensions and the Leech lattice. We also present a natural decoding algorithm for lattices constructed from lattices of smaller dimension, and apply our results on the number of lattice points in a small sphere to conclude on the performance of this algorithm

    Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

    Full text link
    Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized version of Babai's nearest plane algorithm (i.e., successive interference cancelation (SIC)). To find the closest lattice point, Klein's algorithm is used to sample some lattice points and the closest among those samples is chosen. Lattice reduction increases the probability of finding the closest lattice point, and only needs to be run once during pre-processing. Further, the sampling can operate very efficiently in parallel. The technical contribution of this paper is two-fold: we analyze and optimize the decoding radius of sampling decoding resulting in better error performance than Klein's original algorithm, and propose a very efficient implementation of random rounding. Of particular interest is that a fixed gain in the decoding radius compared to Babai's decoding can be achieved at polynomial complexity. The proposed decoder is useful for moderate dimensions where sphere decoding becomes computationally intensive, while lattice reduction-aided decoding starts to suffer considerable loss. Simulation results demonstrate near-ML performance is achieved by a moderate number of samples, even if the dimension is as high as 32
    • …
    corecore