2,486 research outputs found

    Online Learning with Feedback Graphs: Beyond Bandits

    Get PDF
    We study a general class of online learning problems where the feedback is specified by a graph. This class includes online prediction with expert advice and the multi-armed bandit problem, but also several learning problems where the online player does not necessarily observe his own loss. We analyze how the structure of the feedback graph controls the inherent difficulty of the induced TT-round learning problem. Specifically, we show that any feedback graph belongs to one of three classes: strongly observable graphs, weakly observable graphs, and unobservable graphs. We prove that the first class induces learning problems with Θ~(α1/2T1/2)\widetilde\Theta(\alpha^{1/2} T^{1/2}) minimax regret, where α\alpha is the independence number of the underlying graph; the second class induces problems with Θ~(δ1/3T2/3)\widetilde\Theta(\delta^{1/3}T^{2/3}) minimax regret, where δ\delta is the domination number of a certain portion of the graph; and the third class induces problems with linear minimax regret. Our results subsume much of the previous work on learning with feedback graphs and reveal new connections to partial monitoring games. We also show how the regret is affected if the graphs are allowed to vary with time

    Weak and Strong Reinforcement Number For a Graph

    Get PDF
    Introducing the weak reinforcement number which is the minimum number of added edges to reduce the weak dominating number, and giving some boundary of this new parameter and trees

    Dichotomy for tree-structured trigraph list homomorphism problems

    Get PDF
    Trigraph list homomorphism problems (also known as list matrix partition problems) have generated recent interest, partly because there are concrete problems that are not known to be polynomial time solvable or NP-complete. Thus while digraph list homomorphism problems enjoy dichotomy (each problem is NP-complete or polynomial time solvable), such dichotomy is not necessarily expected for trigraph list homomorphism problems. However, in this paper, we identify a large class of trigraphs for which list homomorphism problems do exhibit a dichotomy. They consist of trigraphs with a tree-like structure, and, in particular, include all trigraphs whose underlying graphs are trees. In fact, we show that for these tree-like trigraphs, the trigraph list homomorphism problem is polynomially equivalent to a related digraph list homomorphism problem. We also describe a few examples illustrating that our conditions defining tree-like trigraphs are not unnatural, as relaxing them may lead to harder problems
    • …
    corecore