377 research outputs found

    Interference Alignment with Analog Channel State Feedback

    Full text link
    Interference alignment (IA) is a multiplexing gain optimal transmission strategy for the interference channel. While the achieved sum rate with IA is much higher than previously thought possible, the improvement often comes at the cost of requiring network channel state information at the transmitters. This can be achieved by explicit feedback, a flexible yet potentially costly approach that incurs large overhead. In this paper we propose analog feedback as an alternative to limited feedback or reciprocity based alignment. We show that the full multiplexing gain observed with perfect channel knowledge is preserved by analog feedback and that the mean loss in sum rate is bounded by a constant when signal-to-noise ratio is comparable in both forward and feedback channels. When signal-to-noise ratios are not quite symmetric, a fraction of the multiplexing gain is achieved. We consider the overhead of training and feedback and use this framework to optimize the system's effective throughput. We present simulation results to demonstrate the performance of IA with analog feedback, verify our theoretical analysis, and extend our conclusions on optimal training and feedback length.Comment: accepted, to appear in IEEE Transactions on Wireless Communication

    Broadcast Channels with Delayed Finite-Rate Feedback: Predict or Observe?

    Full text link
    Most multiuser precoding techniques require accurate transmitter channel state information (CSIT) to maintain orthogonality between the users. Such techniques have proven quite fragile in time-varying channels because the CSIT is inherently imperfect due to estimation and feedback delay, as well quantization noise. An alternative approach recently proposed by Maddah-Ali and Tse (MAT) allows for significant multiplexing gain in the multi-input single-output (MISO) broadcast channel (BC) even with transmit CSIT that is completely stale, i.e. uncorrelated with the current channel state. With KK users, their scheme claims to lose only a log(K)\log(K) factor relative to the full KK degrees of freedom (DoF) attainable in the MISO BC with perfect CSIT for large KK. However, their result does not consider the cost of the feedback, which is potentially very large in high mobility (short channel coherence time). In this paper, we more closely examine the MAT scheme and compare its DoF gain to single user transmission (which always achieves 1 DoF) and partial CSIT linear precoding (which achieves up to KK). In particular, assuming the channel coherence time is NN symbol periods and the feedback delay is NfdN_{\rm fd} we show that when N<(1+o(1))KlogKN < (1+o(1)) K \log K (short coherence time), single user transmission performs best, whereas for N>(1+o(1))(Nfd+K/logK)(1log1K)1N> (1+o(1)) (N_{\rm fd}+ K / \log K)(1-\log^{-1}K)^{-1} (long coherence time), zero-forcing precoding outperforms the other two. The MAT scheme is optimal for intermediate coherence times, which for practical parameter choices is indeed quite a large and significant range, even accounting for the feedback cost.Comment: 25 pages, 4 figures, submitted to IEEE Transactions on Wireless Communications, May 201

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    On the Degrees of Freedom of time correlated MISO broadcast channel with delayed CSIT

    Full text link
    We consider the time correlated MISO broadcast channel where the transmitter has partial knowledge on the current channel state, in addition to delayed channel state information (CSI). Rather than exploiting only the current CSI, as the zero-forcing precoding, or only the delayed CSI, as the Maddah-Ali-Tse (MAT) scheme, we propose a seamless strategy that takes advantage of both. The achievable degrees of freedom of the proposed scheme is characterized in terms of the quality of the current channel knowledge.Comment: 7 pages, 1 figure, submitted to ISIT 2012, extended version with detailed proof

    Eigen-Inference Precoding for Coarsely Quantized Massive MU-MIMO System with Imperfect CSI

    Full text link
    This work considers the precoding problem in massive multiuser multiple-input multiple-output (MU-MIMO) systems equipped with low-resolution digital-to-analog converters (DACs). In previous literature on this topic, it is commonly assumed that the channel state information (CSI) is perfectly known. However, in practical applications the CSI is inevitably contaminated by noise. In this paper, we propose, for the first time, an eigen-inference (EI) precoding scheme to improve the error performance of the coarsely quantized massive MU-MIMO systems under imperfect CSI, which is mathematically modeled by a sum of two rectangular random matrices (RRMs). Instead of performing analysis based on the RRM, using Girko's Hermitization trick, the proposed method leverages the block random matrix theory by augmenting the RRM into a block symmetric channel matrix (BSCA). Specially, we derive the empirical distribution of the eigenvalues of the BSCA and establish the limiting spectra distribution connection between the true BSCA and its noisy observation. Then, based on these theoretical results, we propose an EI-based moments matching method for CSI-related noise level estimation and a rotation invariant estimation method for CSI reconstruction. Based on the cleaned CSI, the quantized precoding problem is tackled via the Bussgang theorem and the Lagrangian multiplier method. The prosed methods are lastly verified by numerical simulations and the results demonstrate the effectiveness of the proposed precoder

    Location-Aided Coordinated Analog Precoding for Uplink Multi-User Millimeter Wave Systems

    Full text link
    Millimeter wave (mmWave) communication is expected to play an important role in next generation cellular networks, aiming to cope with the bandwidth shortage affecting conventional wireless carriers. Using side-information has been proposed as a potential approach to accelerate beam selection in mmWave massive MIMO (m-MIMO) communications. However, in practice, such information is not error-free, leading to performance degradation. In the multi-user case, a wrong beam choice might result in irreducible inter-user interference at the base station (BS) side. In this paper, we consider location-aided precoder design in a mmWave uplink scenario with multiple users (UEs). Assuming the existence of direct device-to-device (D2D) links, we propose a decentralized coordination mechanism for robust fast beam selection. The algorithm allows for improved treatment of interference at the BS side and in turn leads to greater spectral efficiencies.Comment: 17 pages, 4 figure

    Efficient Downlink Channel Probing and Uplink Feedback in FDD Massive MIMO Systems

    Full text link
    Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can be implemented with Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD) operation. FDD massive MIMO systems are particularly desirable due to their implementation in current wireless networks and their efficiency in situations with symmetric traffic and delay-sensitive applications. However, implementing FDD massive MIMO systems is known to be challenging since it imposes a large feedback overhead in the Uplink (UL) to obtain channel state information for the Downlink (DL). In recent years, a considerable amount of research is dedicated to developing methods to reduce the feedback overhead in such systems. In this paper, we use the sparse spatial scattering properties of the environment to achieve this goal. The idea is to estimate the support of the continuous, frequency-invariant scattering function from UL channel observations and use this estimate to obtain the support of the DL channel vector via appropriate interpolation. We use the resulting support estimate to design an efficient DL probing and UL feedback scheme in which the feedback dimension scales proportionally with the sparsity order of DL channel vectors. Since the sparsity order is much less than the number of BS antennas in almost all practically relevant scenarios, our method incurs much less feedback overhead compared with the currently proposed methods in the literature, such as those based on compressed-sensing. We use numerical simulations to assess the performance of our probing-feedback algorithm and compare it with these methods.Comment: 24 pages, 10 figure

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Active Learning and CSI Acquisition for mmWave Initial Alignment

    Full text link
    Millimeter wave (mmWave) communication with large antenna arrays is a promising technique to enable extremely high data rates due to the large available bandwidth in mmWave frequency bands. In addition, given the knowledge of an optimal directional beamforming vector, large antenna arrays have been shown to overcome both the severe signal attenuation in mmWave as well as the interference problem. However, fundamental limits on achievable learning rate of an optimal beamforming vector remain. This paper considers the problem of adaptive and sequential optimization of the beamforming vectors during the initial access phase of communication. With a single-path channel model, the problem is reduced to actively learning the Angle-of-Arrival (AoA) of the signal sent from the user to the Base Station (BS). Drawing on the recent results in the design of a hierarchical beamforming codebook [1], sequential measurement dependent noisy search strategies [2], and active learning from an imperfect labeler [3], an adaptive and sequential alignment algorithm is proposed. An upper bound on the expected search time of the proposed algorithm is derived via Extrinsic Jensen-Shannon Divergence. which demonstrates that the search time of the proposed algorithm asymptotically matches the performance of the noiseless bisection search up to a constant factor. Furthermore, the upper bound shows that the acquired AoA error probability decays exponentially fast with the search time with an exponent that is a decreasing function of the acquisition rate. Numerically, the proposed algorithm is compared with prior work where a significant improvement of the system communication rate is observed. Most notably, in the relevant regime of low (-10dB to 5dB) raw SNR, this establishes the first practically viable solution for initial access and, hence, the first demonstration of stand-alone mmWave communicationComment: This paper appears in: IEEE Journal on Selected Areas in Communications On page(s): 1-16 Print ISSN: 0733-8716 Online ISSN: 1558-000

    Joint Design of Fronthauling and Hybrid Beamforming for Downlink C-RAN Systems

    Full text link
    Hybrid beamforming is known to be a cost-effective and wide-spread solution for a system with large-scale antenna arrays. This work studies the optimization of the analog and digital components of the hybrid beamforming solution for remote radio heads (RRHs) in a downlink cloud radio access network (C-RAN) architecture. Digital processing is carried out at a baseband processing unit (BBU) in the "cloud" and the precoded baseband signals are quantized prior to transmission to the RRHs via finite-capacity fronthaul links. In this system, we consider two different channel state information (CSI) scenarios: 1) ideal CSI at the BBU 2) imperfect effective CSI. Optimization of digital beamforming and fronthaul quantization strategies at the BBU as well as analog radio frequency (RF) beamforming at the RRHs is a coupled problem, since the effect of the quantization noise at the receiver depends on the precoding matrices. The resulting joint optimization problem is examined with the goal of maximizing the weighted downlink sum-rate and the network energy efficiency. Fronthaul capacity and per-RRH power constraints are enforced along with constant modulus constraint on the RF beamforming matrices. For the case of perfect CSI, a block coordinate descent scheme is proposed based on the weighted minimum-mean-square-error approach by relaxing the constant modulus constraint of the analog beamformer. Also, we present the impact of imperfect CSI on the weighted sum-rate and network energy efficiency performance, and the algorithm is extended by applying the sample average approximation. Numerical results confirm the effectiveness of the proposed scheme and show that the proposed algorithm is robust to estimation errors
    corecore