10,167 research outputs found

    Trajectory Control of Robotic Manipulator using Metaheuristic Algorithms

    Get PDF
    Robotic manipulators are extremely nonlinear complex and, uncertain systems. They have multi-input multi-output (MIMO) dynamics, which makes controlling manipulators difficult. Robotic manipulators have wide applications in many industries like processes, medicine, and space. Effective control of these manipulators is extremely important to perform these industrial tasks. Researchers are working on the control of robotic manipulators using conventional and intelligent control methods. Conventional control methods are proportional integral and derivative (PID), Fractional order proportional integral and derivative (FOPID), sliding mode control (SMC), and optimal & robust control while intelligent control method includes Artificial Neural network (ANN), Fuzzy logic control (FLC) and metaheuristic optimization algorithms based control schemes. This paper presents the trajectory control of a robotic manipulator using a PID controller. Four different meta-heuristic algorithms namely Sooty tern optimization (STO), Spotted Hyena optimizer (SHO), Atom Search optimization (ASO), and Arithmetic Optimization algorithm (AOA) are used to optimize the gains of PID controller for trajectory control of a two-link robotic manipulator and a novel hybrid sooty tern and particle swarm optimization (STOPSO) has been designed. These optimization techniques are nature-inspired algorithms that give the optimal gain values while minimizing the performance indices. A performance index comprising Integral time absolute error (ITAE) having weights for both links has been considered to achieve the desired trajectory. These optimization techniques are stochastic in nature so statistical analysis and Freidman’s ranking test has been performed to evaluate the effectiveness of these algorithms. The proposed hybrid STOPSO provided a fitness value of 0.04541 and showed a standard deviation of 0.0002. A comparative study of these optimization techniques is presented and as a result, hybrid STOPSO provides the best results with minimum fitness value followed by STO, AOA, ASO, and SHO algorithms

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly

    The dynamic control of robotic manipulators in space

    Get PDF
    Described briefly is the work done during the first half year of a three-year study on dynamic control of robotic manipulators in space. The research focused on issues for advanced control of space manipulators including practical issues and new applications for the Virtual Manipulator. In addition, the development of simulations and graphics software for space manipulators, begun during the first NASA proposal in the area, has continued. The fabrication of the Vehicle Emulator System (VES) is completed and control algorithms are in process of development

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization

    Full text link
    This paper proposes control laws ensuring the stabilization of a time-varying desired joint trajectory, as well as joint limit avoidance, in the case of fully-actuated manipulators. The key idea is to perform a parametrization of the feasible joint space in terms of exogenous states. It follows that the control of these states allows for joint limit avoidance. One of the main outcomes of this paper is that position terms in control laws are replaced by parametrized terms, where joint limits must be avoided. Stability and convergence of time-varying reference trajectories obtained with the proposed method are demonstrated to be in the sense of Lyapunov. The introduced control laws are verified by carrying out experiments on two degrees-of-freedom of the humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International Conference on Humanoid Robot

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Motion planning and assembly for microassembly workstation

    Get PDF
    In general, mechatronics systems have no standard operating system that could be used for planning and control when these complex devices are running. The goal of this paper is to formulate a work platform that can be used as a method for obtaining precision in the manipulation of micro-entities using micro-scale manipulation tools for microsystem applications. This paper provide groundwork for motion planning and assembly of the Micro-Assembly Workstation (MAW) manipulation system. To demonstrate the feasibility of the idea, the paper implements some of the motion planning algorithms; it investigates the performance of the conventional Euclidean distance algorithm (EDA), artificial potential fields’ algorithm, and A* algorithm when implemented on a virtual space

    Computational neural learning formalisms for manipulator inverse kinematics

    Get PDF
    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints
    • …
    corecore