10,616 research outputs found

    Above and Beyond the Landauer Bound: Thermodynamics of Modularity

    Get PDF
    Information processing typically occurs via the composition of modular units, such as universal logic gates. The benefit of modular information processing, in contrast to globally integrated information processing, is that complex global computations are more easily and flexibly implemented via a series of simpler, localized information processing operations which only control and change local degrees of freedom. We show that, despite these benefits, there are unavoidable thermodynamic costs to modularity---costs that arise directly from the operation of localized processing and that go beyond Landauer's dissipation bound for erasing information. Integrated computations can achieve Landauer's bound, however, when they globally coordinate the control of all of an information reservoir's degrees of freedom. Unfortunately, global correlations among the information-bearing degrees of freedom are easily lost by modular implementations. This is costly since such correlations are a thermodynamic fuel. We quantify the minimum irretrievable dissipation of modular computations in terms of the difference between the change in global nonequilibrium free energy, which captures these global correlations, and the local (marginal) change in nonequilibrium free energy, which bounds modular work production. This modularity dissipation is proportional to the amount of additional work required to perform the computational task modularly. It has immediate consequences for physically embedded transducers, known as information ratchets. We show how to circumvent modularity dissipation by designing internal ratchet states that capture the global correlations and patterns in the ratchet's information reservoir. Designed in this way, information ratchets match the optimum thermodynamic efficiency of globally integrated computations.Comment: 17 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/idolip.ht

    Stochastic Resonance in Ion Channels Characterized by Information Theory

    Full text link
    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.

    Capacity of SIMO and MISO Phase-Noise Channels with Common/Separate Oscillators

    Full text link
    In multiple antenna systems, phase noise due to instabilities of the radio-frequency (RF) oscillators, acts differently depending on whether the RF circuitries connected to each antenna are driven by separate (independent) local oscillators (SLO) or by a common local oscillator (CLO). In this paper, we investigate the high-SNR capacity of single-input multiple-output (SIMO) and multiple-output single-input (MISO) phase-noise channels for both the CLO and the SLO configurations. Our results show that the first-order term in the high-SNR capacity expansion is the same for all scenarios (SIMO/MISO and SLO/CLO), and equal to 0.5ln(ρ)0.5\ln (\rho), where ρ\rho stands for the SNR. On the contrary, the second-order term, which we refer to as phase-noise number, turns out to be scenario-dependent. For the SIMO case, the SLO configuration provides a diversity gain, resulting in a larger phase-noise number than for the CLO configuration. For the case of Wiener phase noise, a diversity gain of at least 0.5ln(M)0.5 \ln(M) can be achieved, where MM is the number of receive antennas. For the MISO, the CLO configuration yields a higher phase-noise number than the SLO configuration. This is because with the CLO configuration one can obtain a coherent-combining gain through maximum ratio transmission (a.k.a. conjugate beamforming). This gain is unattainable with the SLO configuration.Comment: IEEE Transactions on Communication

    Dynamical decoupling efficiency versus quantum non-Markovianity

    Get PDF
    We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investigate the connection between dynamical decoupling efficiency and the reservoir spectral density. Finally, in the spirit of reservoir engineering, we investigate the optimum system-reservoir parameters for achieving maximum stationary coherences.Comment: 6 pages, 4 figure

    Symmetries of the ratchet current

    Full text link
    Recent advances in nonequilibrium statistical mechanics shed new light on the ratchet effect. The ratchet motion can thus be understood in terms of symmetry (breaking) considerations. We introduce an additional symmetry operation besides time-reversal, that effectively reverses the nonequilibrium driving. That operation of field-reversal combined with time-reversal decomposes the nonequilibrium action so to clarify under what circumstances the ratchet current is a second order effect around equilibrium, what is the direction of the ratchet current and what are possibly the symmetries in its fluctuations.Comment: 13 pages, heavily extended versio

    Mutual Information and Minimum Mean-square Error in Gaussian Channels

    Full text link
    This paper deals with arbitrarily distributed finite-power input signals observed through an additive Gaussian noise channel. It shows a new formula that connects the input-output mutual information and the minimum mean-square error (MMSE) achievable by optimal estimation of the input given the output. That is, the derivative of the mutual information (nats) with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE, regardless of the input statistics. This relationship holds for both scalar and vector signals, as well as for discrete-time and continuous-time noncausal MMSE estimation. This fundamental information-theoretic result has an unexpected consequence in continuous-time nonlinear estimation: For any input signal with finite power, the causal filtering MMSE achieved at SNR is equal to the average value of the noncausal smoothing MMSE achieved with a channel whose signal-to-noise ratio is chosen uniformly distributed between 0 and SNR
    corecore