297 research outputs found

    Quantum Error Correction beyond the Bounded Distance Decoding Limit

    Full text link
    In this paper, we consider quantum error correction over depolarizing channels with non-binary low-density parity-check codes defined over Galois field of size 2p2^p . The proposed quantum error correcting codes are based on the binary quasi-cyclic CSS (Calderbank, Shor and Steane) codes. The resulting quantum codes outperform the best known quantum codes and surpass the performance limit of the bounded distance decoder. By increasing the size of the underlying Galois field, i.e., 2p2^p, the error floors are considerably improved.Comment: To appear in IEEE Transactions on Information Theor

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore