55 research outputs found

    From Underactuation to Quasi‐Full Actuation: A Unifying Control Framework for Rigid and Elastic Joint Robot

    Get PDF
    The quest for animal-like performance in robots has driven the integration of elastic elements in their drive trains, sparking a revolution in robot design. Elastic robots can store and release potential energy, providing distinct advantages over traditional robots, such as enhanced safety in human-robot interaction, resilience to mechanical shocks, improved energy efficiency in cyclic tasks, and dynamic motion capabilities. Exploiting their full potential, however, necessitates novel control methods. This thesis advances the field of nonlinear control for underactuated systems and utilizes the results to push the boundaries of motion and interaction performance of elastic robots. Through real-life experiments and applications, the proposed controllers demonstrate that compliant robots hold promise as groundbreaking robotic technology. To achieve these objectives, we first derive a simultaneous phase space and input transformation that enables a specific class of underactuated Lagrangian systems to be treated as if fully actuated. These systems can be represented as the interconnection of actuated and underactuated subsystems, with the kinetic energy of each subsystem depending only on its own velocity. Elastic robots are typical representatives. We refer to the transformed system as quasi-fully actuated due to weak constraints on the new inputs. Fundamental aspects of the transforming equations are 1) the same Lagrangian function characterizes both the original and transformed systems, 2) the transformed system establishes a passive mapping between inputs and outputs, and 3) the solutions of both systems are in a one-to-one correspondence, describing the same physical reality. This correspondence allows us to study and control the behavior of the quasi-fully actuated system instead of the underactuated one. Thus, this approach unifies the control design for rigid and elastic joint robots, enabling the direct application of control results inherited from the fully-actuated case while ensuring closed-loop system stability and passivity. Unlike existing methods, the quasi-full actuation concept does not rely on inner control loops or the neglect and cancellation of dynamics. Notably, as joint stiffness values approach infinity, the control equivalent of a rigid robot is recovered. Building upon the quasi-full actuation concept, we extend energy-based control schemes such as energy shaping and damping injection, Euler-Lagrange controllers, and impedance control. Moreover, we introduce Elastic Structure Preserving (ESP) control, a passivity-based control scheme designed for robots with elastic or viscoelastic joints, guided by the principle of ``do as little as possible''. The underlying hope is that reducing the system shaping, i.e., having a closed-loop dynamics match in some way the robot's intrinsic structure, will award high performance with little control effort. By minimizing the system shaping, we obtain low-gain designs, which are favorable concerning robustness and facilitate the emergence of natural motions. A comparison with state-of-the-art controllers highlights the minimalistic nature of ESP control. Additionally, we present a synthesis method, based on purely geometric arguments, for achieving time-optimal rest-to-rest motions of an elastic joint with bounded input. Finally, we showcase the remarkable performance and robustness of the proposed ESP controllers on DLR David, an anthropomorphic robot implemented with variable impedance actuators. Experimental evidence reveals that ESP designs enable safe and compliant interaction with the environment and rigid-robot-level accuracy in free motion. Additionally, we introduce a control framework that allows DLR David to perform commercially relevant tasks, such as pick and place, teleoperation, hammer drilling into a concrete block, and unloading a dishwasher. The successful execution of these tasks provides compelling evidence that compliant robots have a promising future in commercial applications

    The Effect of Systematic Error in Forced Oscillation Wind Tunnel Test Apparatuses on Determining Nonlinear Unsteady Aerodynamic Stability Derivatives

    Get PDF
    One of the basic problems of flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Using a high fidelity simulation of a forced oscillation test rig modeled after the NASA LaRC 12-ft tunnel machine, Design of Experiments and Monte Carlo methods, the sensitivities of the longitudinal stability derivatives to systematic errors are computed. Finally, recommendations are made for improving the fidelity of wind tunnel test techniques for nonlinear unsteady aerodynamic modeling for longitudinal motion

    Integrated modeling and analysis methodologies for architecture-level vehicle design.

    Get PDF
    In order to satisfy customer expectations, a ground vehicle must be designed to meet a broad range of performance requirements. A satisfactory vehicle design process implements a set of requirements reflecting necessary, but perhaps not sufficient conditions for assuring success in a highly competitive market. An optimal architecture-level vehicle design configuration is one of the most important of these requirements. A basic layout that is efficient and flexible permits significant reductions in the time needed to complete the product development cycle, with commensurate reductions in cost. Unfortunately, architecture-level design is the most abstract phase of the design process. The high-level concepts that characterize these designs do not lend themselves to traditional analyses normally used to characterize, assess, and optimize designs later in the development cycle. This research addresses the need for architecture-level design abstractions that can be used to support ground vehicle development. The work begins with a rigorous description of hierarchical function-based abstractions representing not the physical configuration of the elements of a vehicle, but their function within the design space. The hierarchical nature of the abstractions lends itself to object orientation - convenient for software implementation purposes - as well as description of components, assemblies, feature groupings based on non-structural interactions, and eventually, full vehicles. Unlike the traditional early-design abstractions, the completeness of our function-based hierarchical abstractions, including their interactions, allows their use as a starting point for the derivation of analysis models. The scope of the research in this dissertation includes development of meshing algorithms for abstract structural models, a rigid-body analysis engine, and a fatigue analysis module. It is expected that the results obtained in this study will move systematic design and analysis to the earliest phases of the vehicle development process, leading to more highly optimized architectures, and eventually, better ground vehicles. This work shows that architecture level abstractions in many cases are better suited for life cycle support than geometric CAD models. Finally, substituting modeling, simulation, and optimization for intuition and guesswork will do much to mitigate the risk inherent in large projects by minimizing the possibility of incorporating irrevocably compromised architecture elements into a vehicle design that no amount of detail-level reengineering can undo

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    The Design of Shape from Motion Constraints

    Get PDF
    This report presents a set of representations methodologies and tools for the purpose of visualizing, analyzing and designing functional shapes in terms of constraints on motion. The core of the research is an interactive computational environment that provides an explicit visual representation of motion constraints produced by shape interactions, and a series of tools that allow for the manipulation of motion constraints and their underlying shapes for the purpose of design

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    A unified approach to modeling, verifying, and improving the manufacturability of mechanical assemblies

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (p. 247-256).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.The goal of a design engineering organization is to design products that satisfy customers. Reaching this objective is dependent, among other things, on five parameters: the customer expectations, the target percentage of satisfied customers, the nominal performance of the design, the variability in the manufacturing processes, and the sensitivity of the design performance to such variability. This work presents a unified methodology that is amendable to computer implementation for modeling these five parameters for products that are primarily mechanical in nature. The validity of this methodology is subject to five major assumptions: the nominal performance of the design matches the performance expected by the customer, the set of customer expectations can be represented completely by a set of geometric relationships and tolerances between features in the assembly, the degradation in product performance is due solely to quantifiable variability or mean shift in the assembly geometry, the variability in each geometric relationship is independent of the variability in any other geometric relationship, and any compliant parts in the assembly can be accurately modeled as sets of rigid parts connected with linearly-compliant joints. The assembly model is developed using a combination of Screw Theory, Network Theory, Homogeneous Transformation Matrices, and Probability Theory. It is shown how this model can be used to verify the manufacturability of a mechanical assembly design. It is also shown how the model and the results obtained from it can be used to improve the level of manufacturability of a design if it is found to be unacceptably low. To validate the effectiveness and accuracy of the methodology, an automated version written for Matlab®(cont.) was used to model and analyze the manufacturability of an engine valvetrain. The results of this case study are presented and compared to results using existing industry-standard tools. Several suggestions for improving the manufacturability of the valvetrain are also proposed and discussed.by J. Michael Gray.S.M

    A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

    Get PDF
    Rigid multibody dynamics is an important area of mathematical modeling which attempts to predict the position and velocity of a system of rigid bodies. Many methods will use smooth bodies without friction. The task is made especially more difficult in the face of noninterpenetration constraints, joint constraints, and friction forces. The difficulty that arises when noninterpenetration constraints are enforced is directly related to the fact that the usual methods of computing the distance between bodies do not give any indication of the amount of penetration when two bodies interpenetrate. Because we wish to calculate vectors that are normal to contact, and because it is necessary to determine the amount of penetration, when it exists, the classical computation of the depth of penetration when applied to convex polyhedral bodies is inefficient.We hereby describe a new method of determining when two convex polyhedra intersect and of evaluating a measure of the amount of penetration, when it exists. Our method is much more efficient than the classic computation of the penetration depth since it can be shown that its complexity grows only linearly with the size of the problem. We use our method to construct a signed distance function and implement it for use with a method for achieving geometrical constraint stabilization for a linear-complementarity-based time-stepping scheme for rigid multibody dynamics with joints, contact, and friction which, before now, was not equipped to handle polyhedral bodies. During our analysis, we describe how to compute normal vectors at contact, despite the cases when the classic derivative fails to exist.We put this analysis into a time-stepping procedure that uses a convex relaxation of a mixed linear complementarity problem with a resulting fixed point iteration that is guaranteed to converge if the friction is not too large, the time step is not too large, and the initial solution is feasible. Finally, we construct an algorithm that achieves constraint stabilization with quadratic convergence.The numerical results proved to be quite satisfactory, implying that the constraint stabilization holds, and that quadratic convergence exists

    Aural stealth for night vision portable imagers

    Get PDF
    Modern tactics for carrying out military and antiterrorist operations calls for the development of a new generation of enhanced portable infrared imagers. The high performance of these imagers relies on the focal plane arrays, which are maintained at cryogenic temperatures using rotary Stirling cryogenic engines. These engines are known as powerful sources of wideband vibration export. For the sake of weight and compactness, the enclosure of the above imager is usually designed in the form of a light metal thin-walled shell, accommodating a directly mounted Infrared Detector Dewar Cooler Assembly. The operation of the device typically leads to an excitation of the inherently lightly damped structural resonances and therefore, to a radiation of the specific acoustic signature capable of compromising the aural stealth of the IR imager. Such a noisy IR imager may be detected from quite a long distance using enhanced sniper detection equipment or even aurally spotted when used in a close proximity to the target. Numerous efforts were taken towards achieving the desired inaudibility level, apparently becoming one of a crucial figure of merit characterizing the portable IR imager. However, even the best examples of modern should-be silent imagers are quite audible from as far as 50 meters. The presented research intends to improve the aural stealth of the portable IR imager by using three different approaches: First, by compliantly mounting the Infrared Detector Dewar Cooler Assembly where the stiffness and damping of the vibration protective pad are optimized for the best acoustical performance without developing excessive line of sight jitter. Secondly, by using the concept of the weak radiator to reshape the enclosure mode shapes, and finally developing a multi-modal distributed dynamic absorber (MMDA) to enhance the absorption of the vibrating structure. The multi-modal characteristic of such a dynamic absorber makes it highly dynamically reactive through a wide frequency range (20 kHz) of excitation. It will be shown that incorporating a MMDA into the vibrating structure will result in ultra range vibration attenuation, making the IR aurally silent

    NASA Tech Briefs, December 1989

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
    corecore