343 research outputs found

    Relative log-concavity and a pair of triangle inequalities

    Full text link
    The relative log-concavity ordering lc\leq_{\mathrm{lc}} between probability mass functions (pmf's) on non-negative integers is studied. Given three pmf's f,g,hf,g,h that satisfy flcglchf\leq_{\mathrm{lc}}g\leq_{\mathrm{lc}}h, we present a pair of (reverse) triangle inequalities: if iifi=iigi<,\sum_iif_i=\sum_iig_i<\infty, then D(fh)D(fg)+D(gh)D(f|h)\geq D(f|g)+D(g|h) and if iigi=iihi<,\sum_iig_i=\sum_iih_i<\infty, then D(hf)D(hg)+D(gf),D(h|f)\geq D(h|g)+D(g|f), where D()D(\cdot|\cdot) denotes the Kullback--Leibler divergence. These inequalities, interesting in themselves, are also applied to several problems, including maximum entropy characterizations of Poisson and binomial distributions and the best binomial approximation in relative entropy. We also present parallel results for continuous distributions and discuss the behavior of lc\leq_{\mathrm{lc}} under convolution.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ216 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Sampling Correctors

    Full text link
    In many situations, sample data is obtained from a noisy or imperfect source. In order to address such corruptions, this paper introduces the concept of a sampling corrector. Such algorithms use structure that the distribution is purported to have, in order to allow one to make "on-the-fly" corrections to samples drawn from probability distributions. These algorithms then act as filters between the noisy data and the end user. We show connections between sampling correctors, distribution learning algorithms, and distribution property testing algorithms. We show that these connections can be utilized to expand the applicability of known distribution learning and property testing algorithms as well as to achieve improved algorithms for those tasks. As a first step, we show how to design sampling correctors using proper learning algorithms. We then focus on the question of whether algorithms for sampling correctors can be more efficient in terms of sample complexity than learning algorithms for the analogous families of distributions. When correcting monotonicity, we show that this is indeed the case when also granted query access to the cumulative distribution function. We also obtain sampling correctors for monotonicity without this stronger type of access, provided that the distribution be originally very close to monotone (namely, at a distance O(1/log2n)O(1/\log^2 n)). In addition to that, we consider a restricted error model that aims at capturing "missing data" corruptions. In this model, we show that distributions that are close to monotone have sampling correctors that are significantly more efficient than achievable by the learning approach. We also consider the question of whether an additional source of independent random bits is required by sampling correctors to implement the correction process

    The cost of information

    Full text link
    We develop an axiomatic theory of information acquisition that captures the idea of constant marginal costs in information production: the cost of generating two independent signals is the sum of their costs, and generating a signal with probability half costs half its original cost. Together with a monotonicity and a continuity conditions, these axioms determine the cost of a signal up to a vector of parameters. These parameters have a clear economic interpretation and determine the difficulty of distinguishing states. We argue that this cost function is a versatile modeling tool that leads to more realistic predictions than mutual information.Comment: 52 pages, 4 figure

    Sampling correctors

    Get PDF
    In many situations, sample data is obtained from a noisy or imperfect source. In order to address such corruptions, this paper introduces the concept of a sampling corrector. Such algorithms use structure that the distribution is purported to have, in order to allow one to make "on-the-fly" corrections to samples drawn from probability distributions. These algorithms then act as filters between the noisy data and the end user. We show connections between sampling correctors, distribution learning algorithms, and distribution property testing algorithms. We show that these connections can be utilized to expand the applicability of known distribution learning and property testing algorithms as well as to achieve improved algorithms for those tasks. As a first step, we show how to design sampling correctors using proper learning algorithms. We then focus on the question of whether algorithms for sampling correctors can be more efficient in terms of sample complexity than learning algorithms for the analogous families of distributions. When correcting monotonicity, we show that this is indeed the case when also granted query access to the cumulative distribution function. We also obtain sampling correctors for monotonicity without this stronger type of access, provided that the distribution be originally very close to monotone (namely, at a distance O(1/log2 n)). In addition to that, we consider a restricted error model that aims at capturing "missing data" corruptions. In this model, we show that distributions that are close to monotone have sampling correctors that are significantly more efficient than achievable by the learning approach. We then consider the question of whether an additional source of independent random bits is required by sampling correctors to implement the correction process. We show that for correcting close-to-uniform distributions and close-to-monotone distributions, no additional source of random bits is required, as the samples from the input source itself can be used to produce this randomness

    Building Loss Models

    Get PDF
    This paper is intended as a guide to building insurance risk (loss) models. A typical model for insurance risk, the so-called collective risk model, treats the aggregate loss as having a compound distribution with two main components: one characterizing the arrival of claims and another describing the severity (or size) of loss resulting from the occurrence of a claim. In this paper we first present efficient simulation algorithms for several classes of claim arrival processes. Then we review a collection of loss distributions and present methods that can be used to assess the goodness-of-fit of the claim size distribution. The collective risk model is often used in health insurance and in general insurance, whenever the main risk components are the number of insurance claims and the amount of the claims. It can also be used for modeling other non-insurance product risks, such as credit and operational risk.Insurance risk model; Loss distribution; Claim arrival process; Poisson process; Renewal process; Random variable generation; Goodness-of-fit testing

    Bayesian Single Sampling Acceptance Plans for Finite Lot Sizes

    Get PDF
    1 online resource (PDF, 24 pages
    corecore