19,423 research outputs found

    Binary and Ternary Quasi-perfect Codes with Small Dimensions

    Full text link
    The aim of this work is a systematic investigation of the possible parameters of quasi-perfect (QP) binary and ternary linear codes of small dimensions and preparing a complete classification of all such codes. First we give a list of infinite families of QP codes which includes all binary, ternary and quaternary codes known to is. We continue further with a list of sporadic examples of binary and ternary QP codes. Later we present the results of our investigation where binary QP codes of dimensions up to 14 and ternary QP codes of dimensions up to 13 are classified.Comment: 4 page

    Improving success probability and embedding efficiency in code based steganography

    Full text link
    For stegoschemes arising from error correcting codes, embedding depends on a decoding map for the corresponding code. As decoding maps are usually not complete, embedding can fail. We propose a method to ensure or increase the probability of embedding success for these stegoschemes. This method is based on puncturing codes. We show how the use of punctured codes may also increase the embedding efficiency of the obtained stegoschemes

    Partial-sum queries in OLAP data cubes using covering codes

    Get PDF
    A partial-sum query obtains the summation over a set of specified cells of a data cube. We establish a connection between the covering problem in the theory of error-correcting codes and the partial-sum problem and use this connection to devise algorithms for the partial-sum problem with efficient space-time trade-offs. For example, using our algorithms, with 44 percent additional storage, the query response time can be improved by about 12 percent; by roughly doubling the storage requirement, the query response time can be improved by about 34 percent

    Families of nested completely regular codes and distance-regular graphs

    Get PDF
    In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius ρ\rho equal to 33 or 44, and are 1/2i1/2^i-th parts, for i∈{1,
,u}i\in\{1,\ldots,u\} of binary (respectively, extended binary) Hamming codes of length n=2m−1n=2^m-1 (respectively, 2m2^m), where m=2um=2u. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter DD equal to 33 or 44 are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun
    • 

    corecore