11,164 research outputs found

    Retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks

    Get PDF
    The retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks are derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully connected or the symmetrical extremely diluted network. Capacity-gain parameter phase diagrams are obtained for the Q=3, Q=4 and Q=∞Q=\infty state networks with uniformly distributed patterns of low activity in order to search for the effects of a gradual dilution of the synapses. It is shown that enlarged regions of continuous changeover into a region of optimal performance are obtained for finite stochastic noise and small but finite connectivity. The de Almeida-Thouless lines of stability are obtained for arbitrary connectivity, and the resulting phase diagrams are used to draw conclusions on the behavior of symmetrically diluted networks with other pattern distributions of either high or low activity.Comment: 21 pages, revte

    Rise of correlations of transformation strains in random polycrystals

    Get PDF
    We investigate the statistics of the transformation strains that arise in random martensitic polycrystals as boundary conditions cause its component crystallites to undergo martensitic phase transitions. In our laminated polycrystal model the orientation of the n grains (crystallites) is given by an uncorrelated random array of the orientation angles Ξ_i, i = 1, . . . ,n. Under imposed boundary conditions the polycrystal grains may undergo a martensitic transformation. The associated transformation strains Δ_i, i = 1, . . . ,n depend on the array of orientation angles, and they can be obtained as a solution to a nonlinear optimization problem. While the random variables Ξ_i, i = 1, . . . ,n are uncorrelated, the random variables Δ_i, i = 1, . . . ,n may be correlated. This issue is central in our considerations. We investigate it in following three different scaling limits: (i) Infinitely long grains (laminated polycrystal of height L = ∞); (ii) Grains of finite but large height (L » 1); and (iii) Chain of short grains (L = l_0/(2n), l_0 « 1). With references to de Finetti’s theorem, Riesz’ rearrangement inequality, and near neighbor approximations, our analyses establish that under the scaling limits (i), (ii), and (iii) the arrays of transformation strains arising from given boundary conditions exhibit no correlations, long-range correlations, and exponentially decaying short-range correlations, respectivel

    Symmetrically normalized instrumental-variable estimation using panel data

    Get PDF
    In this paper we discuss the estimation of panel data models with sequential moment restrictions using symmetrically normalized GMM estimators. These estimators are asymptotically equivalent to standard GMM but are invariant to normalization and tend to have a smaller finite sample bias. They also have a very different behaviour compared to standard GMM when the instruments are poor. We study the properties of SN-GMM estimators in relation to GMM, minimum distance and pseudo maximum likelihood estimators for various versions of the AR(1) model with individual effects by mean of simulations. The emphasis is not in assessing the value of enforcing particular restrictions in the model; rather, we wish to evaluate the effects in small samples of using alternative estimating criteria that produce asymptotically equivalent estimators for fixed T and large N. Finally, as an empĂ­rical illustration, we estimate by SN-GMM employment and wage equations using panels of UK and Spanish firms

    Optimal sensing for fish school identification

    Full text link
    Fish schooling implies an awareness of the swimmers for their companions. In flow mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are critical for providing quantitative information that assists the quantification of proximity to other swimmers. Here we examine the distribution of sensors on the surface of an artificial swimmer so that it can optimally identify a leading group of swimmers. We employ Bayesian experimental design coupled with two-dimensional Navier Stokes equations for multiple self-propelled swimmers. The follower tracks the school using information from its own surface pressure and shear stress. We demonstrate that the optimal sensor distribution of the follower is qualitatively similar to the distribution of neuromasts on fish. Our results show that it is possible to identify accurately the center of mass and even the number of the leading swimmers using surface only information
    • 

    corecore